Synergic Effects among Endo-xylanase, $\beta$-Xylosidase, and $\alpha$-L-Arabinofuranosidase from Bacillus stearothermophilus

  • Suh, Jung Han (Department of Genetic Engineering, College of Natural Resources, Korea University) ;
  • Ssang Goo Cho (Department of Genetic Engineering, College of Natural Resources, Korea University) ;
  • Yong Jin Choi (Department of Genetic Engineering, College of Natural Resources, Korea University)
  • Published : 1996.06.01

Abstract

Synergism among endo-xylanase, $\beta$-xylosidase, and $\alpha$-L-arabinofuranosidase from Bacillus stearothermophilus upon xylan hydrolysis was investigated by using birchwood, oat spelt, and arabinoxylan as substrates. Endo-xylanase and $\beta$-xylosidase showed the cooperative action on all three substrates tested, revealing the fact that $\beta$-xylosidase assists endo-xylanase action in xylan hydrolysis by relieving the endproduct inhibition upon endo-xylanase conferred by xylooligomers. $\alpha$-L-Arabinofuranosidase also exhibited synergic effects with endo-xylanase and $\beta$-xylosidase on oat spelt and arabinoxylan, which contained significant amounts of arabinose side chains, whereas no synergism was detected on birchwood xylan which had only trace amounts of the side chain. Thus, the hydrolysis of xylan containing arabinose side chains required $\alpha$-L-arabinofuranosidase as well as endo-xylanase and $\beta$-xylosidase for the better hydrolysis of the substrates, and these enzymes work cooperatively in order to maximize the extent and rate of xylan hydrolysis.

Keywords