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On Progressing Waves over Sloping Beaches
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Abstract[ ] The solution for progressing waves over beaches is obtained for a sloping angle 7/2n with n, an
integer, based on the solution of Lewy and Stoker for standing waves. The behaviors of the waves are

graphically illustrated.
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1. INTRODUCTION

Because progressing waves over uniformly sloping
beaches exhibit interesting behaviors, the present
problem has attracted many prominent mathematicians
and scientists around the middle of the twentieth
century. Their solutions, mainly dealing with standing
waves over sloping beaches, have been successfully
obtained in principle, but the solutions do not offer any
detailed knowledge of characteristic behaviors of
progressing waves over sloping beaches regarding the
variations of the amplitude, wavelength and phase
speed of the waves. Recently, Chung er al (1995)
have worked out in detail the solution for variations of
the wave amplitude, wavelength and phase speed
through complicated procedures such as analytic
continuation for arbitrary slope angles of the beaches.
The solution of Lewy (1946) and Stoker (1947, 1957)
is confined to the problem for special slope angle of
the beach m/2n with n an integer. But their solution is

in much simpler form than those for arbitrary angles of

the beach. Hence we make use of the solution of Lewy
and Stoker and show how to derive characteristic
behavior of the progressing waves over uniformly

sloping beaches.

2. FORMULATION

A system of plane progressing waves is moving
toward the shoreline over a uniformly sloping beach
and the slope angle of the beach is 7/2n where n is an

integer. The wave potential ®(x , y :¢) satisfies

Vip=0 for x >0 and —xtanw<y< 0 )}
Dy +gd, =0 along y=0 )]
D, =0 along bottom y =-x tan @ 3
D=ReA e? eilc+a) g5 x — 4oo @

where k = 6*/g and A, is real.
If the solution ® (x, y : #) of (1) through (4) is found,

the surface displacement n(x; f) is given by

N ) =—3 Glx, 0;1) ©)
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Fig. 1. Schematic diagram.

we write @ (x, y; f)in the form of
D(x,y ;1) =(x ,y)cos Ot —hy(x , y)sinor (6)

where ¢;(x,y) and ¢(x,y) are two standing wave
potentials. The following dimensionless variables are

introduced for convenience:

(&, y)=kx,y), t'=ot Q)

Substituting (6) and (7) in the full problem, we get

V2¢,=0 forx >0and—x tan 0<y<0 (8)
¢;, —¢; =0 alongy =0 C)]
¢ =0 alongy =—x tan @ (10)

¢,=A_e¥ cosx,p,=A_ e’ sinx as x—+o (11)

for j=1, 2 after dropping the primes. The present
problem is to find ¢, and ¢, for (8) through (11).

3. SOLUTION

We introduce the following linear homogeneous

problem for standing waves:

Viy, =0  forx >0 and —x tan @<y< 0 (12)
v, —y; =0 alongy =0 13)
v, =0 along y =0—x tan @ 14)

for j=1, 2 where y; and y, are 90 degrees out of phase
at x=+o0. We seek to construct the solutions for ¢,
and ¢, with y, and y,. The solutions of y; and y, are
given by Lewy and Stoker (1957) as

vilx,y)=Re

ﬁN—FZCiezm, @ =x+iy) (15)
j=1

Yx,y)= Rez a; l:ezﬁfffj % dt ~i n'ezﬁf] (16)
j=1 .

where

a; = G
T (-1

imdely
Bj=€’("+2)

1.

P N (z7-Dm
Ci=e ¢ 12 cotz—noot—zz-ncot————zn
C,=Cn

Equation (16) has a logarithmic singularity at x=0.
Further we have the following relations:
[ £ =0 for Reiz f; <0 and Im iz, < 0
i ¢ J i

=2m -0 (2" for Reiz[)'j >0andImizf3; <0
17

for large |z|. Hence (16) is further written as

wx,y) =Re|:—inz ajelﬁ':| +0 ()
=
for iz, <0 and Im iz f; < 0
= Rel:i 71:2 a]-ezﬂ'j} +0 (x 1)
=1

forizB, >0 and Imizf3; < 0
for large x (18)

The constant C,is written in form of C,=|C,|ei%
Then C,;=Cn=|Cn|e7® It follows from (15), (17)
and (18) that

ite 1) = [ cos e -

+ cot E’;—e-(x sin2 &~y c0s2 &) cos (X COS2 @
+y sin2 a)——g—a)

+ cot-—=- cot -2£e-<x sind -y cosd @) cos (x cosd @
2n 2n

+y sind@—7— o)+ -+

+ g~ sia20+xcos20) cos (x oS 2W—y Sin 20— 0)

+ cot -zlr—e-@ sind w+y c0s4 @) cos (x COS 4@
I

-y sind w— -275 — Ot ] +0(x 1) for large x

19
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Wlx,y) =M[ey sin(x — ) +

(n—1\n
+ cot Zie-@ sin 20~y c0s2) sin (x cos 20
n
+y sin2 @— % -a)

+ cot = cot -2—7£e-(x sin4w+y cosd®) g1 (x cos 4
2n 2n

+y sin4w— - o) - -

+ e~ sin20+x cos 20) i (x cos 20—y sin 20— )

+ cot Zle‘(* sin4@+x c0s40) cos (x cos 4@
n

~y sin4m— —g— ~ O } +0 (x1)  for large x
(20)

Since ¢ (x,y) and ¢,(x,y) are the solution for a

linear homogeneous problem, any linear combination of

¢, and ¢, is also a solution from the linearity principle.
By proper combinations of ¢, and ¢,, we obtain

& =A,,[e>’ cosx +cot zle‘(”iﬂm-ywsm)
n

cos (x cos 20+y sin 20— g)

+ cot L cot A’E_e—(x sin4w—y cos4w)
n 2n

‘e
sin (x cos4w+y sindw—m+- -
+ gt sin20+x c0s20) cog (x cos 2m—y sin 20)

T .
+ cot —z-—e-(x sin4w+y c0s40) cos (X €Os 40
n

—ysindw— §)+---J+o (1) 1)

[ =A(,,l:e” Silx +Cot —— e~ sin 20y cos2e)
2n
sin (x cos 2@+ sin 2w— g)
+ cot L cot E_e—(x sin4aw—y cosdaw)
2n

sin (x cos 4w+y sin4w—mH- - -

+ e~{xsin20+y cos20) gin (x cos 20—y sin2w)

V3 .
+ cot —Z—e*x sin4w+y cos44) cos (x cos 4@
n

~ysindo— -’2’—) +} +0 (1) (22)

Equations (21) and (22) agree with (27) and (28) in
Chung et al. (1995). We combine the right sides of (21)
and (22) into cosine and sine waves, respectively, as
Chung and Lim (1991). Then we substitute those
single waves in (6) and return to the original variables

to get

@(x,o;t)=A0(x)cos[Ja+ﬁ(x)+or]+0(x—l) (23)

10x; £) = 1(x ) sin [kx +Be)+ ot] +0 () (24)

The unknown A, 7y and B(x) become known if the
slope angle o is given. The local wavelength A(x) and
phase speed c(x) of progressing waves over a uni-
formly sloping beach are given by the following
relations according to Chung et al. (1995).

cx) _ Mx) _ 1
= M) (25)
(=) M) % [x +Bx k]

For example, if ® = n/6, then
Agx) =A A x)
Tolx) = 1(>2)A (x)

|1 B)siney
Pe)= tanl{z 1—ﬂlsin2(a)1/2)}

A () =V[1+ 1) +410x ) sin¥(a,2)
%(x) = csc We ™ 20— g+ /2

Bix) = 22x )/[1 + %x)] (26)

The results for @=n/6 are plotted in Figs 2 and 3.
Similarly, the results for the case of w=m12 are

computed and shown.
4. DISCUSSION

As seen from Figs. 2 through 5, the amplitude,
wavelength and phase speed of the progressing waves

first decrease and then increase near the shoreline. The
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Fig. 2. Variation of wave amplitude for a sloping angle of
30 degrees.
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Fig. 3. Variation of phase speed or wavelength for a slop-
ing angle of 30 degrees.
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Fig. 4. Variation of wave amplitude for a sloping angle of

15 degrees.

energy of the waves converges to a point as they
approach the shoreline. That is why the solution has a
logarithmic singularity along the shoreline at x=0, and
the wave amplitude becomes infinite there.

Since A =2m/k, the wavelength is larger if k is smaller.
If the wavelength is larger, the waves feel the bottom
earlier. Therefore, the amplitude decreases earlier if k is
smaller as seen in Figs. 2 and 3. The wavelength and
phase speed behave similarly.
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Fig. 5. Variation of phase speed or wavelength for a slop-
ing angle of 15 degress.

One often observes from the shore that approaching
waves on a beach whose slope angle is not so mild
disappear and are lost halfway to the shoreline. Then
sudden big waves surge violently and break near the
shoreline. Those peculiar behaviors of progressing
waves over a uniformly sloping beach are well illus-
trated by the variations of the wave amplitude,

wavelength and phase speed on a sloping beach.

5. CONCLUDING REMARKS

The present solution is based on the ingenious
solution of Lewy and Stoker for slope angle w=27/n.
The present study shows in detail how the solution can
be used to see the behaviors of progressing waves over
a sloping beach even if the angle is restricted.

The behaviors of the waves over a sloping beach
is still a mystery because it is not clear why the
amplitude of the waves first decreases as their energy

converges.
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APPENDIX. DERIVATION OF ¢, and ¢,

We seek the solutions ¢; and ¢, to the present pro-
blem via Lewy and Stoker solutions. Since y; and y,
in (19) and (20} are the solutions of linear homoge-
neous problem, ¢; and ¢, can be obtained readily from
the linearity principle. For simplicity, we consider the

problem near x =+ec. In the case y; and Y, reduce to

w1<x,y>='(%)’%cos<x—a> (A1)
%(x,y)=%sin(x—a) A2)

near x =-+eo, Because of o and |C,| in (A1) and (A2), ,
and y, are different from ¢, and ¢, in (11). In order to
delete o and |C,| from (A1) and (A2), we first expand
right sides of (A1) and (A2). Then
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[Cn | ey L
Wi(x,y) =—"—""1——(cosx cos a+sinx sing) A3
o)=L (A3)
Yx,y)= |Cn | e (sinx cos 0t~cos x sinoy) (Ad)

(n -1

From the linearity principle, we obtain ¢, and ¢, from

the following linear combinations

C,|Cn | mer
=C ay,—C sinayy=—"1 """
o, 1cosay—Csinoy, Dy Cosx
(AS)
C,|Cn | mey
=C;sinay,+C ay=—1" """ g
o, 1sinay;+Cycos oy, (n 1y sinx
(A6)

for some constant C,. The wave amplitude A, af x=-+oo

is now given by

_CyChlm

o = m (A7)

Therefore, we simply obtained the present solution
from the Lewy and Stoker solution. Similarly, we
obtain (20) and (21) from (19) and (20).



