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1.Introduction

The word ‘fractal’ was coined by Mandelbrot in his fundamental essay from the Latin
fractus, meaning broken, to describe objects that were too irregular to fit into a traditional
geometrical setting([6]). The main tool of fractal is dimension in its many forms. Here, the
fractal dimension of set is a number which tells how densely the set occupies the metric
space in which it lies. In particular, fractal dimension for non-smooth and irregular sets
might be a real number that is not an integer number. In this paper, we will define box
counting dimension, Hausdorff dimension, s-potential and s-energy of # etc, and will
prove theorem 2.8, theorem 3.1 and theorem 3.2.
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2.Preliminaries

Let (X,d) denote a complete metric space, and let H(X) be the Hausdorff measure of X
and A be non-empty compact subset of X. For any >0, let B,.(x) be the closed ball of

radius € and center at a point x€X, and let N(A, &) be the smallest positive integer M

M
such that AC UlB,(x,,), X1, X0, x,€ X,
=t

Definition 2.1. Define the box-counting dimension or box dimension of A as follows ;
o log(N(A, 8))

(1) dimpA LI_I‘E'IO ~log 3 .

Roughly speaking, (1) says that N(A, 8)=4 ~° for small &, where s=dim gA.

Define the lower box counting dimension of A denoted by dimgA as follows;

. — i ioe 10R(N(A, 8 )
dimgA lau_n.omf log 8 .

Define the upper box counting dimension of A denoted by dimgA as follows;

dim zA 1‘,1r~n'o S Y ([1,(51,[6)).

Definition 2.2. Let U be any non-empty subset of n-dimensional Euclidean space IR"
and the diameter of U defined as | Ul = sup { | x—y|;x,y€U}.
Let F be a subset of IR" and let s be a non-negative number. For any & >0, we define

(=]

H,(PFP=inf { X |U:|*;{U;} is a d-cover of F } and H(F)= ldir_r}ofﬂ(F). We call

1=1]

H’(F) the s-dimensional Hausdorff measure of F. If t>s and { U;}is a & -cover of F,
we have X | U;| <63 | U;| °

Here we known that there is a critical value of s at which H*(F) 'jumps’ from « to 0.
This critical value is called the Hausdorff dimension of F and written dim gF. Accordingly,

dim gF=inf { s ;H*(F)=0) = sup { s ;H(F)=o0)

oo if s{dimgzF
so that H(F)=
0 if s>dimgF ([11.02 )05 .06 1.[7 D.

Definition 2.3. Let z# be a mass distrbution on F with I(x)<c, where I u) is the
s-energy of .
(1) The s-potential at a point x of IR" is defined as follows;

¢s(x)___f__j_u_(2)_s, for s=0.
| x—yl
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(2) The s-energy of s is defined as follows ;

1(0)= [ o (Daun) = [ [AED - (1g))

Definition 2.4. Let (X,0) be a metric space and B the set of all open balls of X. A
countable family of hounded subsets of X will be denoted by 8 and D@R) = ;’:’z | E].

If ECX, 0, AL, " = { D@ < r, ECUR } and BE, r = {8 c B/IDR<r,
the elements of R do not overlap and YB e % p (B, E)=0}. Let A=id g+ (A(t)=t,
AYD=+¢ acR"),

(A°~M)(E)=sup { A%R) | R€B(E,»))
sup { X A%N) | te IR* ,ReB(E, 7}
sup { 2% te IR, #eB(E, ») (2).

Definition 2.5. 4(E) = inf {a € IR*/A*-M(E)=0}
= sup {a € IR'/ A*-M(E)=0o0}

with the following properties;

(A)) 4 is monotone ; E|\CE, = A(E)<4(E,).

(Ap) 4 is stable ; 4(E\UEy)=max(4(E)), 4(Ey); this follows from
(H—M)(EUE)<(H-M)(E))+(H—-M)(Ep).

(A4;) 4(E)=4(E) ([2)).

Lemma 2.6. (Mass distribution principle)
Let u# be a mass distribution on F' and suppose that for some s there are numbers c>0

and 8>0 such that #()=<c| U| " for all sets U with |U| <8. Then H(F)zu(F)/c
and s<dimzF< dimgF< dim gF.

Proof. The theoretic proof is easy. This follows the proof of Falconer's Mass distribution
principle 4.2. ([6)). ///

Lemma 2.7. Let € be a family of balls contained in some region of IR® Then there is a

(finite or countable) disjoint subcollection { B;} such that UB < U B}, where Bj is the
B et i
closed ball concentric with B; and of four times the radius.
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Proof. The theoretic proof is casy. This follows the proof of Falconer’s Covering lemma

48. ({6D. ///

Theorem 2.8. Let ¢ be a mass distribution on IR". Let FCIR"™ be a Borel set and

u (B, (x))
,)

0<c<oo be a constant. If lm , for all xEF, then H(F)<2°u( IR")/c.

Proof. let FclUB By Lemma 27, there exists B8 such that
Beg

UB cU B;, where B; is the closed ball concentric with B; and of four times the radius.
Bee i

So { B; }is an 86 -cover of F,

H{;,(F)SE | B;|* 34‘2 | B;|°® S4’2c"2’u(B(x))
=4‘z‘c“>;,‘ 1 (B{2) = ssc“g: u (BLx))
’c",u(UB) <8¢ u(IR™)<o0 ,

Therefore H(F)<8°c'x( IR®)<<o. Finally, if F is unbounded and H*(F)»8°%¢ 'x ( IR™), the
H'-measure of some bounded subset of F will also exceed this value, contrary to the
above. Therefore H(F)<2°u (IR™/c. ///

Lemma 2.9. Let F be a Borel set with 0¢H(F){co, then there exists a constant b and a
compact set ECF with H(E)>0 such that H(ENB/x))<b#, for all x=IR"and r>0.

Proof. Let x# be a mass distribution on IR" let FCIR" be a Borel set and let 0<{c{
be a constant.

If Erp;—#(?;& >c for all xeF , then H(F)<2°p(IR"/c) weeeeee: (A)

Let Fy= {z< IR"Tim —-——~Hs(FﬂB ()

Applying to (A),(B), the Lemma will be proved easily. ///

Lemma 2.10. Let F be a Borel subset of IR" with H(F)=co, then there exists a
compact set ECF with 0<(H(F)<{o and such that for some constant b, H(ENB/x))<br,

for all xeIR" and r=0.

Proof. Take u satisfying u(A)= H(FNA). Then by Lemma 29, if F,= {xe IR";
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Hs B'- s S, —1-s n 'S, n
11%%)2” ). B2 0 (R =3 IR AR =L (P

Thus HF)<4 HF). Now, H(F~ )= H'(F) ~ H'(F)) = HX(F) - & H(F) =5 H(F).

H(FN\B/%))

let E=F-F, and HE)>0, then l’i_rpo " <2'**  for some =x<E,.

Therefore, by Lemma 2.9, there exists ECE,, with H*(E)>0 and a number #»; such that

H(FNBLx) (F(;B,.(x)) <2**? for all x€FE and 0<r<r,. But H‘(Ff;B,(x)) < H:gF), where
0

_.}__Is_’%ﬂzb Thus H‘(EﬂB,(x))Sbt; ///

3.Main theorem

Theorem 3.1. Let FCIR" If there is a mass distribution # on F with I, (u)<, then
H(F)=o and dim gF=s.

Proof. Suppose that I{x)<e for some mass distribution # with support contained in F.

Define F;= {XEF;EM)O} _ Then ﬂ(?’zr(x)) -
0

- o n, where p is density. If

xeF| for each & >0, there exists a sequence { r;} of numbers decreasing to 0 such that

#(BLxNz e7rl, V. We claim w(F)=0. First, if #({x})>0,
= [ o Ddu(z) = [ [-dd2d)

| x—y| *
Zcfu(x)duzcu(x)fdu, fdu=°°, therefore I(p)=o0,

Now if «({x))<0, ie. p({x))=0, from continuity of x by taking ¢; (0<{g{7) small

enough, u (A,-)2-41— eri (i=1,2+), where A,=B,(x)—B,(x). qXr; such that

(B8 =2 v u(A)= u(B, (D)~ u(B, (D) 2] eri Taking subsequence if

necessary, suppose that r,.,<q,; for all i, where A; are disjoint annulus centered at x.

1 1 1 1 1 o e .
For < lx <r; 22— 2 . = :
q; l yi boog; |x~y| 7 I x | s ( i), and then A, are dlS]Oln’C
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o [ —dy) o fdu(y) 1 1 1
annulus centered at x. LI (x| * 5 Ja 7 ol er,‘-—4 €.

But Is(p)=f¢,.(x)du(x)<oo , 50 ¢ {x)<co,

o (D)= f _du(y) . f _du(y) é[% c

lx—yl° = £a, |x—-yl|°*
Therefore ¢ ()= for u-almost all x. Therefore u(F)=0, since lm”—(}’;'(—x)) =0,
for xeF-F,. By Lemma 28 and since —E—(CD- =0, HF= _H’(F Fy)
S u(® __#(F) _ u(F) But  me —co  Therefore If(ﬂZ—AEl:oo.
c c c pu c

Hence H'(f)=o0. ///

Theorem 3.2. Let E be a bounded subset of X and for each r>0, M;(E) be the greatest

number of non-overlapping open balls of diameter E(fr. rlsuch that o (B,E)=0. Then

log M,(E)

AI(E)=1’1Ln0 S yy

Proof. (A°-M)(E,»=sup { A* (R) ; ReB(E,n) = { Ex | %] % R is cover of E }.
Let Ry={ X ; X is non-overlapping open balls of diameter [%,r], n(x)=M,;(E)}. Then
(A°=M)(E,n) = sup { A°(R) ; ReB(E, )} 2A%R,) = xaoA“(x).

Since A% x)=1° wher t is the diameter of X (%(tsr), then 27T, ie. t"Z(Er)“.
(A°—-M)(E, = zgﬂ(gr)“=M;(E)(§r)“, for each a=IR*, where M;(E) is the number of

R;. In the other direction, assume that J(E)*0, 0<8<r<J4(E). By definition 2.5,
4(E)= sup { ae IR*;(A°~M)(E)=}. Hence (A"—M)E)=co and for each r € (0,1),
there exists REB(E, r) such that A (R)=1. Let n=0 and 4, be the number of BER such

that 27" | B| <27, élk,z_"’zl. There exists NE Z such that

My E)= k,=2Y (12777,
Then logM',-H{E)= B log2¥+1log(1—-2°7").
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log M- E) log(1--2%7" _ 1 log(1-2%"n _ 1 _
So og2® ° B+ og2¥ BYNT iog2 =8+ [by fN)=06gV)

if and only if there exist ab such that a< | é((]]\% | b and cg(N)=6g(N), where c is

non-negative constant] , which concludes the proof. ///
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