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1. INTRODUCTION

Washburn (1970) presented a mathematical model for optimal burn-in procedure with
minimum bum-in cost for the first time. Plesser and Field (1977) presented a
cost-optimized burn-in model. Chandrasekaran (1977) determinated the optimal bum-in
procedure to maximize mean residual life. Since then, most works on optimal bum-in
procedure have been treated to optimized single objective such as total burn-in cost,
minimum failure rate, maximum mean residual life, or maximize reliability. Haimes (1975)
introduces "surrogate worth trade-off method” for solving multiple objective problems. For
multiobjective burn-in problem, the method is very powerful. In practice, we usually have
two objectives for burn-in. For example, if we consider the best reliability at time x, then
R(x| ) should be maximized with minimizing Cay. The optimal burn-in procedure should

be as following:

MIN Total average cost ( Cay)
MIN - R(x|
st. Rlx| ) = Ryu(x)

Cav = C (minyav

If we need a longer average life, then the goal should be maximizing m(#. Then, the
optimal burn-in should be as following:
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MIN Total average cost ( Cay)
MIN - m()
st. m() = MTTF

Cav = C(minyav

where
R ..(®) = the required reliability at time x by customers or manufacturers
MTTF = the required mean time to fail,
C (mmyav = the required total average cost.
2. OPTIMIZATION FOR SERIES SYSTEMS
Notation

-R(x| ) = system conditional reliability

R{x | #) = subsystem conditional reliability

r{x ] #) = Conditional reliability of each component in subsystem j
. R mia(%) = required system reliability at time x

R; (x| ) = required subsystem reliability at time x

Cs.av = system average cost

Csmn = required system average cost

n; = total number of redundant components in subsystem j

N = number of subsystems in series

2.1 Mode! Assumptions

1. There are N Independent subsystems in series.
2. there are #; iid. components in each subsystem; #; is fixed.

3. Each subsystem is 1 out of x; A subsystem is good until all #; components fail
The system conditional reliability is as follow

R(x] D= I:IR,(x ) where Rfx|H=1-[1—r{x|H}" 1)

4. The system average cost is follow;

Csav = $Ci,AV< rin; )

where C; a(r;) is the average cost for component j

Then, we have the following multi-objective problem for series systems;
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MIN —[R(x!}#)= nR,(xl 9] 3)
MIN Cgav = ZC;'.AV(V;')”;
s.t

R,(x I f)ZRs‘min(x)
Rfx| D2R (%)

Cs.4v=C s min

Procedure
Since we have two objective functions we must compromise in our preferred solution,

We apply Surrogate Worth Trade-off Method to find the preferred optimal solution for the
above problem.

3. lllustrative Example

Suppose that we defined the following values of the constraints and parameters for the
two-mixed Weibull distribution in time-to-failure pattern for a particular product.

71=0.05 $=0.2 By=8p=4Fy=hr=1

=3,000 75=20,000 7,=1,000 #7»=18,000

Comn=4,500 Rgumn()=0.85 R;mn(9)=09 2=25,000 j=1,2
7=8 ny=10

If our goal is the maximizing conditional reliability at mission time x=25,000 hours
while minimizing the total burn-in cost, we apply the static 2-objective multiplier algorithm
of the SWT method (Haimes, 1975) to solve the two objective problem.

First step is to find the upper bound of A;; by solving the following

MIN —~R( (x|
s.t.
Cs.av < C(min)

Rz 1D 2 Rg ()
Rix| & = Ry i)

Rz(xl t) -y Rz.mi,,(x)

where
C,(min) is the solution of the following procedure;
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MIN Csay

s.t.
Csav < Cgmn
R(x|H = Rg ()
Rl(xl t) - Rl.min(x)

Rz(xl t) = Rz'min(x)

The Lagrange multiplier for the Cs 4y constraint is the upper bound of Aj;;. This step
is computationally too difficult in most cases. We use the augmented Lagrangian Algorithm
(Donald & Michael, 1975) to find the upper bound of A,;. For the example problem, we
have the upper bound of A, equal to 0.00195313.

Different values of A, are selected from the interval (0, upper bound of A;3) and the

corresponding Pareto optimal solutions are calculated. The results are in Table 3. Then,
The DM (decision making) is asked for the following questions: "would you be willing to
pay an additional one unit of cost in order to improve the system conditional reliability by
Ap? "Rate your willingness on a scale from - 10 (totally unwillingness) to +10 (totally
willingness) with zero signifying indifference.” If the willingness scales are in Table 3.5,
then Wy (willingness) = 0 is attained at the 5th row. This implies that the DM has
reached his compromise solution. Therefore, we have the preferred values of the decision
variables as follow:

t; {optimal burn-in time for the first component ‘;ype) = 39.65938
t, (optimal burn-in time for the second component type) = 2293.76

Ri(x |5 = 0921402 and Rx(x| § = 09337719

Tal_)le 3: Pareto optimal solutions and DM responses

Trade off ratio R(xlt) System cost Willingness
1/1000 0.860716 37625 +8
1/9000 0.86301 3771.072 +3

1/10000 0.863803 3778.017 +2
1/11000 0.863987 3780.044 +]
1/11500 0.864016 3780.395 0

1/11600 0.864022 3780.462 -1
1/11700 0.864027 3780.528 -2
1/12000 0.85962 3764.456 ~-10
1/20000 0.85962 3764.456 -10

1/300000 0.85962 3764.456 -10
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Conclusion

The optimal burn-in times for three reliability measures do not coincide (Kim and
boardman, 1996). In other words, an optimal burn-in procedure that optimizes one reliability
measure does not yield an optimal value for another measure. Therefore, the decision of
which measure should be considered for a particular product (or component) before
planning the burn-in procedure. For example, if the goal is to improve the average life of
a particular product, then the mean residual life ( m(#) is the right choice. If the goal is to
minimize the failure rate ( &(#)), then the failure rate is the relevant measure. If the goal is
to improve reliability at mission time x (fixed length), then the conditional reliability
(R(x| H) is the relevant measure to be considered for the burn-in procedure.

After making a decision on which measure should be considered for a particular product
and formulating the cost model, we need to frame the bum-in problem as a multiobjective
optimization problem. In practice, we have at least two objectives for the burn-in problem.
If we consider the best reliability at time x, then R(x|# should be maximized while
minimizing Cyy(total average bum-in cost). On the other hand, if we need a longer
average life, then the goal should be maximizing m(#). The Surrogate Worth Trade-Off
method is very powerful for solving the multiple objective function burn-in problem.
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APPEDIX

Surrogate Worth Trade-Off Method

The n objective multiplier algorithm of the SWT method is follow:
Part 1

1. Choose initial values for 4 > 0.

2. Solve
min f(X)+ Af_(X)

st. Xe X

The solution vector X* is substitute into A(X) and f_o(X) to find £(A4) and Sfi,(A).

3. If enough information has been generated, go on to next step. If not, choose an new
value for 4 > 0 and go back to step 2.

Part 2
" 4. For each set of values A, f](A), f.,(A) at which the worth is desired, ask the DM
for his assessment of how much A, additional units of objective f, are worth in relation
to one additional unit of objective f; The assessment is made on an ordinal scale (from
-10 to +10 with zero signifying equivalent worth). The assessment is the value of W{A)
(surrogate worth functions) This step is repeated for all j = 2, 3, ...,n.

5. Repeat step 4 until we find A° such that W{A")=0 for j = 2, 3, ...,n.

6. Find the preferred decision vector X* by

min f(X)+A"f_(X)
st. Xe X

7: A sensitivity analysis could be performed to determine the possible effects of
implementing the preferred solution.
8. Stop!

The W (A) (surrogate worth functions) can be defined as following:

a W; > 0 when A marginal units of f(X) are preferred over one marginal unit of
(X, given the level of achievement of all the objectives.
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b. Wy = 0 when A,; marginal units of f,(X) are equivalent to one marginal unit of
(X, given the level of achievement of all the objectives.
c. Wy < 0 when Ay marginal units of f;(X) are not preferred over one marginal unit

of f{X), given the level of achievement of all the objectives.



