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Wave Patterns Due to a Point Impulse Travelling
over Free Surface of Water of Finite Depth

G.J. Lee* and Y.K. Chung'

Abstract

If a point impulse travels over free surface of water of finite depth, surface
waves consist of divergent waves. The crestlines of those divergent waves are
short and end on the cusp line if the impulse travels at a subcritical speed. But
the crestlines become infinitely long and there are no cusps if the impulse travels
at a supercritical speed.

1 Introduction

Havelock initiated study for the present problem. He ingeniously expressed the wave
induced by a point impulse travelling over the free surface of water of finite depth
in terms of Fourier integrals. Then he computed and gave two wave patterns for
two subcritical speeds and one wave pattern for a supercritical speed[1]. His wave
patterns for the subcritical speeds consist of transverse and divergent waves which
are very similar to the well known Kelvin wave pattern except for wide cusp angles.
Furthermore, his wave pattern for the supercritical speed consists of the crestlines of
divergent waves which are concave to the x-axis. According to the note by editor|[l,
p.430], Inui recalculated the wave pattern for the supercritical speed and found that
the creslines are not concave to the x-axis.

Recently the Kelvin wave pattern has turned out that its wave pattern consists
of the creslines of divergent waves[2]. Based on the method of Chung and Lim which
derived the new Kelvin wave pattern, the present problem is revisited. In the present
study, the authors attempt to investigate wave patterns by applying the method of
Green functions. The point impulse is represented by the point pressure in terms of
Dirac delta function. Waves downstream from the point impulse are formulated by a
Green function and approximated asymptotically by the principle of stationary phase.
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2 Formulation

We shall consider surface waves induced by a point pressure moving on the free surface
of water of finite depth H at a constant speed U. We introduce the rectangular coor-
dinate system (z,y, z) moving at the constant speed UU. The origin of the coordinate
system is fixed at the point pressure such that the x,y-plane coincides with the calm
free surface and the z-axis is directed upwards. Let us introduce the following Green
function:

11 /2 e *sechkH cosh k(z + H) cosh k(¢ + H
Glzy,z6n.0) = R + R :/'—r_/o sec Uda_/ : k- Ksec(?o' tanh kH ( )
x coslk(z — £) cos o] cos[k(y — ) sin o] (k cos’s + K) — K}dk (1)

os|
4 / /2 {e~*H sec’r sechkoH cosh ko(z + H) cosh ko(¢ + H)
1 — K H sec% sech’koH
x sinlko(z — €) cos o] cos[ko(y — 1) sin o](ko cos + K) ~ K}do

for (z,y) in downstream
where
K = g/U?
R = Jz—8?+y-n?+(z- ()
Ri = (=& +(y—n)?+(z+2H + (),

o = cos'vKH if KH < 1,
® T Jo if KH > 1

I

and kg = ko(o) is the positive root of
ko — K sec’o tanh kg H = 0 forop <o < 7/2 (2)

The Green function in (1) is obtained by replacing z — ¢ in the Green function[3, p.150,
Eq.(3.51b)] by —(z — £) because the point source in the present case is moving in the
negative direction. The surface displacement is given by

h(z,y) = -g—qsz(a:, %,0) 3)

The point impulse is expressed as the point pressure given by p(z,y) = pyd(z)d(y) in
terms of the Dirac delta function where py < 0. Applying Green’s theorem, we get the
surface potential for the flow due to the point impulse as

¢ :r,y,O = - 0

Let us introduce the polar coordinates (7, §) defined by = = rcosf and y = rsiné. It
follows from (1) that (3) is further written as

m/2 k2 —koH iry(0,0)
hr8) ~ ——FIm | Kb (ko cos’ + K)e™*¥ cosh koHe

~ TIK Py J-x)2 1 — K H sec’ sech®kg H
x[u(o + 7/2) — u(o + 09) + u(o — 09) — u(o — 7 /2)|do for large r  (5)

(m’ y’ O; 0) 0’ 0) (4)
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where u(o) is the unit step function such that u(o) = 1if 0 > 0, u(o) = 0if ¢ < 0,
and ¥(8,0) = k(o) cos(6 + o). We can readily see that h(r,8) in (5) satisfies h(r, §) =
h(r,—6). Thus, waves are symmetrical about the x-axis. Hence, we consider waves
only in the upper half plane from now on.

We further approximate (5) for h(r, 6). In this connection, we apply the principle
of stationary phase to (5) for large r. The equation ¥,(8,0) = 0 yields the following
quadratic equation for stationary points:

2 tanh ko H tan 8 tan’o — Fy(koH)tano + Fy(kgH)tan6 = 0 (6)

where Fy(koH) = tanh ko H + ko Hsech®koH and Fy(koH) = tanh koH — koHsechkoH.
It follows from (6) that two stationary points are determined from

Fy(koH) % \/F2(koH) — 8Fy(ko H) tanh ko H tan? 0 -
4tanh kg H tan 6

tano =

Eq.(7) is a relation among ky, 8, and the stationary point ¢ while (2) is a relation
between kg and o. Hence, ky and o are functions of 6, i.e., kg = ky(6) and o = a(8).

3 Wave Patterns for F, > 1

We first consider waves when the point impulse travels at a supercritical speed. The
negative sign in (7) is absurd if F; > 1. Hence, the negative sign is discarded. Let
6* be the angle for the outer limit for waves. Then waves prevail inside the wedge for
0 < 6 < @* in the upper half plane. Let 0* = ¢(0*) and k§ = ko(6*). Since kg — 0 as
o — o0p from (2), we get

1
tan 6*

tanog = (8)
from (7) by taking the limit ¢ — oy. Hence, we have oy = o* from (8). Further, (7)
yields o(0) = 7/2. Thus, o varies in 0y < 0 < 7/2 if § varies in 0 < § < 6" in the
upper plane. If § > 6*, there is no real root for (6) and there are no real stationary
points. Since og = cos™} VK H = cos™}(1/F,) it follows from (8) that

* sl 1
f* = sin < Fr) (9)
There are no cusps. Waves are confined inside the V-shaped region in the upper plane
bounded by the outer straight line making an angle 6* with the x-axis. In the region
for @ > 6*, there are no stationary points. Waves in this region are small and ignored.
The angle §* in (9) agrees with that of Havelock(1, p.427, Eq.(118)].

Before we apply the principle of stationary phase to (5) for large 7, it is necessary
to examine the sign of ¥,,(6, o). Differentiating ¥ (6, c) with respect to o twice yields

Yoo (8,0) = (ko)oo cos(8 + o) — 2(ko)y sin(f + o) — ko cos(d + o) (10)
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Figure 1: 8* versus F;

where (kp), and (kp),, are obtained from (2). Direct computations show ,,(8,0) <0
for 8 in 0 < 0 < §*. We now apply the principle of stationary phase to (5) and get

h(r,8) ~ A(r,0)sin[ry(0,0) — 7 /4] for large r (11)

where

Do 2 k3(kycos’o + K)e *H cosh kg H

- - 0
7K pg \ r(v,0(8,0)| 1 — K H sec’ sech®ky H (=p0 > 0)

A(r,0) =

Wave patterns are now represented by a set of the crestlines from the constant
phase

r(6,0) ~ % = 2nm + g (12)

where n is a large positive integer. For a given 6, we compute o and kg from (2) and
(7). Then, the crestlines are computed from (12).
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Figure 2: Crestlines of divergent waves for F;=1.4
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Figure 3: Crestlines of divergent waves for F,=2.0
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Figure 4: Crestlines of divergent waves for F,=5.0

4 Wave Patterns for F, < 1

If the point impulse travels at a subcritical speed, (6) yields two stationary points as
in the Kelvin wave[l]. The limit angle * becomes the cusp angle. The cusp angle is
determined by the vanishing discriminant in (7) as

tanh k} H + k; Hsech®k3 H

tan§® = (13)
\/8(tanh k H — ki Hsech®k3 H) tanh kj H
When the discriminant vanishes, (7) becomes
* * 27,
tan ot — tanh kg H + kj Hsech“ky H (14)

4 tanh kj H tan 6*
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It follows from (2), (13), and (14) that

1

sa(3tanh kG H — ki Hsech®kg H) (15)

ki H =

If H— 400, (13) reduces to tan§* = 273/2 and (14) reduces to tano* = 2712 Those
values of #* and o* agree with the values for the Kelvin wave. The computed values of
kyH,0* and ¢* are given in the Table 1.

Table 1: The wave number and Limit angle

F. | k(H | o*(deg.) | 0*(deg.) | 6" (Havelock)
0.3873 | 10 | 35.2644 | 19.4712 19.47
0.4330 | 8 35.2644 | 19.4713 19.47

0.4998 | 6 35.2624 | 19.4752 19.48
0.5476 | 5 35.2521 | 19.4958 19.50
06116 | 4 35.1917 | 19.6165 19.62
0.7019 | 3 34.8576 | 20.2847 20.30
0.8293 | 2 33.1539 | 23.6922 23.70
0.9656 | 1 25.3414 | 39.3173 39.32

0.9966 | 0.5 | 15.2708 | 59.4583 59.45
0.9999 | 0.2 6.5266 | 76.7469 78.00
1.0000 | O 0.0000 | 90.0000 90.00

Let o, be the stationary point for the negative sign in (7) and 03 be the stationary
point for the positive sign. Then we see that ¢y is in 0 < 0y < ¢" and 03 is in
0* <o <7/2for§in0 <6 < 6. Because ky depends on ¢ from (2), we also write
ko = ko(c). Hence, ko is written as kg = ko(0,) when o = oy in (2). Similarly, ko is
written as kg = ko(o2) when o = 0. We find the two first-order stationary points o,
and o, from (2) and (7). Then, k(o) varies in 0 < ko(o) < k§ whereas ko(02) varies in
ky < ko(o2) < 00. As 8 — 6%, the first-order stationary points o, and o, coalesce into
the single second-order stationary point o*. We find ¢5,(6, 01) > 0 and ¢,,(8, 02) < 0.
Hence, (5) is approximated asymptotically for large r as

h(r,8) ~ Ay(r,0)sin[ry(8, o1) + m/4] + Ag(r, 8) sin[r(6, o) — 7/4] (16)
for large r
where
A(r,0) = — Do 27 k2(0;)[ko(0;) cos?o; + K]e *@H cosh ko(o;) H
T aKpg \ rlves(8, 04)] 1 — K H sec%; sech’ky(0;) H

fori =1,2 (17)
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The first wave on the right side of (16) is called the transverse wave and the second is
called the divergent wave. The two waves are combined into the single wave as

h(r,0) ~ \/(A2—+—A1)2 cos?(w/2) + (Ag— A;)?sin?(w/2) sin[ry(0, o3) — B(r, 8) — 7/4](18)

where

w(r,8) = r[p(8,0:) —Y(8,01)] — /2

1 asinw
0) = tan'|=
plr,6) N R asin®(w/2)
o = 24,
A+ A
Wave patterns are obtained from the constant phase
rip(8,02) — B(r,0) = 2nw + Zﬂ (19)
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Figure 5: Crestlines of divergent waves for F,=0.1
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Figure 6: Crestlines of divergent waves for F,=0.5
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Figure 7: Crestlines of divergent waves for #,,=0.9

5 Discussion and Conclusion

Wave patterns induced by a point impulse in water of finite depth consist of divergent
waves whether the impulse travels at a supercritical speed or not. Wave patterns for
supercritical speeds consist of divergent waves with infinitely long crestlines whereas
wave patterns for subcritical speeds consist of short divergent waves that end on the
cusp lines. Interestingly, we often observe that divergent waves with long crestlines
follow a high speed boat running at a supercritical speed. As Inui pointed out, the
crestlines of the divergent waves for supercritical speeds are not concave to the x-axis
as shown in Figs. 2 through 4.

Very recently, Chung and Lim[2] found the new Kelvin wave pattern induced by a
point impulse travelling over the free surface in which no transverse wave exists. Hence,
the present problem has never been properly studied up to this point.
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