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1. Introduction
gencies.

point, it can be found there are two diver-

Since Kratochvil” recognized a need for the
constitutive equation of plastic spin, many re-
searches have been studied on this subject.
Summarizing them from the conceptual view
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First, as Kratochvil's statement, an additional
constitutive equation has been widely introduced
by Loret”, Dafalias:{“', Pecherski”, Zbib and
Aifantis®, Dafalias and Aifants”, Paulun and
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Pecherskim, Ning and Aifantis”, and so on. It has
been accepted, in general, that the plastic spin
can be described by a function of tensor, which
may represent an aspect of internal state of
material. Dafalias” introduced the
function representation, and proposed the sim-
the
representation theory has an unknown coef-

isotropic

plest one. The constitutive equation by

ficient. Paulun and Pecherski® treated the co-

efficient more rationally. Besides the isotropic

. . 1011}
function approach, Gissen proposed a

generalized flow rule where a microstress plays
in general unsymmetrical

an important role

tensor.
Second, it was argued by some authors®®
that no additional

equation for the plastic spin. According to their

there needs constitutive
works, the additional constitutive equation was
made to be a quite redundant one by deriving a
kinematic function. Recently Schiek and Stumpf™
showed the kinematic function consists of purely
kinernatic quantities with an alternative objective
decomposition.

On the other hand, it is interesting that there
are quite distinctive concepts each other in the
above theories. It can be found that the plastic
spin is still an opened subject to be dug out.
Therefore, more investigations are needed on the
plastic spin to understand its fundamental be-
havior and to develop its future researches.

The purpose of this paper is to provide a
thorough investigation on the plastic spin. The
simulation of plastic spin is conducted on a bodv
centered polycrystal using a simple static ac~
commodation model and constitutive equation of
Johnston-Gilman typem. Based on the present
simulation, the effects of texturing, hardening,
deformation rate, reverse loading and so on, are
investigated. Though the texturing has been
known as an origin of plastic spin, its sig-
emphasized and the governing

nificance is

factors of the plastic spin are suggested.

of 4 7

2. Simulation model

2.1 Kinematics

Departing from the multiplicative decompo-
sition, as shown in Eq. (2.1) and employing the
updated Lagrangian, the deformation gradient
tensor F can be evaluated from the reference

configuration x° updated at previous step.

F=F°F’ 2D

Another reference configuration x” is related
to the configuration x° by Eq. (2.2).

dx’= F"dx° (2.2)

The increment of Green strain tensor can be
described as follows,

AE=‘%‘(FTF_D= —%"{(FP)T(FE)TFQF’J
—(FYTF +(F)TF
=1

(2.3)

where 7 is an unit diagonal tensor. With the
definition of Green strain tensor, Eq. (2.3) is
reduced to Eq. (2.4) as follows,

AE=(F"TAEF’ + 4E" (2.4)

AE¢
measured from x” and J4E”, the plastic strain

where is the elastic strain increment

increment from x°.
The velocity gradient of plastic deformation
gradient is defined as follows.

L'= F(F")7! (2.5)

The ap-
proximately obtained by integrating its velocity

plastic deformation gradient is
gradient and under the assumption of constant
velocity gradient during incremental deformation,
Fp: e(l.'m)
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where At is a small time increment. Eq.(2.6) can
be evaluated by the characteristic equation the-
ory for a function of matrix. To avoid eigenvalue
analysis, Eq.(2.6) Is approximated as follow.
Fr=I+L"At 2.7)
From Eq. (2.4), the elastic strain increment can
be recast as follows.

JE* = (F") " T(4E—4F)(F*) ™! (2.8)

Finally the plastic velocity gradient L’ is
obtained from a constitutive equation, and the
plastic spin is defined as follows.

W=%(L”*(L”) 7 (29)

2.2. Formulation of stress increment

The time derivative of Lagrangian tensor is

spontaneously objective, namely, Lagrangian
objectivity. It is necessary to notice the relation
of the Cauchy

Kirchhoff stress,

stress to the second Piola-

o= % Fo(F)T (2.10)

where o is the Cauchy stress, ¢, the second
Piola-Kirchhoff stress, J the determinant of F.
Taking time derivative at both sides of Eq.(2.10)
and rearranging it, the following objective rate is

obtained.

0==Fo(F) =0—Lo—o(L)"—t{L)o (2.11)

1
J
It is well known that the second Piola-
Kirchhoff stress

strain tensor. The constitutive relation of the

is conjugated to the Green

second Piola-Kirchhoff stress and Green strain
tensor may be given, in incremental form, by

do,=C: JE* (2.12)

where C is a forth order tensor. By substituting
Eq.(2.8) into Eq.(2.12), the following constitutive
equation is obtained in terms of total and plastic

strain increments,

do, = C: {(F)Y " NIE—4E’)(F) ™1

_ (2.13)
= C: (4dE—4E"
where C=(F" 'C(F")"T(=C for small in-
crement).
The wupdating of stress is approximately

performed as follows,

do=do,+ Lo’At+ (L)Y dt+t{L)o°at  (2.14)
where ¢° is the Cauchy stress in the con-
figuration x°.

2.3 Simplified averaging model

Self-consistent models have been suggested to
get macroscopic stress and strain from those of
grains, but they are cumbersome because many
iterations may be needed. Here an approximation
will be dared to use instead of rigorous self-
consistence performance. A grain stress g, Is

suggested as follows".

0,=0+2au(l—p)e"—ef) (2.15)

By specifying a particular accommodation func-
tion @, many accommodation models can be
obtained, such as Taylor’s, Lin's, Kroner's and

-15)

static model. Berveiller and Zaoui™ have shown

that the accommodation function is small except

and rapidly
decreases as the plastic deformation proceeds.

at zero macro-plastic strain e’
Bretheau et al.'® have suggested further smaller

accommodation function in the strain mea-
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surement of a grain. From the above context, it

is plausible to assume
model.
Under the assumption of static model, the

o= 0, namely, static

plastic deformation gradient is approximated by

the following procedure,

F=Llsp=-Lsrr
My g (2.16)
=L s priuF
ng i

where F; is the total deformation gradient of a
grain, n, the number of grains in the aggregate
(assumed that all grains have the same volume),
R" the macroscopic rigid body rotation, R} the
relative rotation of grain. By RiU=Ui=U"
assuming from the static model, the deformation
gradient tensor can be decomposed as follows.

F=RU-- S F)=FF 2.17)
g 1

Here it is assumingly confined that only
dislocation movements of crystallographic slip
systems are responsible for the plastic de-
formation. Then the plastic velocity gradient is
represented by two vectors, gliding direction( s )
and normal vector{ n ) to the slip plane, and slip

velocity 7,

r=-L¢ (2.18)

X
[y

where P;=s;%n;, the indices (4,7) designate
a grain and a slip, respectively (not components
of tensor). Substituting Eq.(2.7) into Eq.(2.18),
the plastic deformation gradient is expressed as
follows.

Fr=1+-4L(5 5 7Py (2.19)
&

i=1;=

And the plastic deformation gradient of a

2R

o) 4 2

grain is, of course, given by the Eq.(2.20).

Fi=1I+ 4t 21 vy Py (2.20)
=

The onentation of grain is updated by trans-

forming two vectors s and n.

F¢=F(F)™ (2.21)

(s))"=Ffisy, (np)'=ny(FH™ (2.22)

2.4 Slip velocity model

Gilman"” suggested the slip velocity model as
shown in Eq.(2.23),

H. +H

y=2bv,(p,+oNe (2.23)

where b is Burger's vector, v, the limit ve-
locity of dislocation, H, material constant, o, the
initial dislocation density, p the dislocation
increasing rate, and r resolved shear stress on
a slip. H, is concerned with a fixed portion of
the generated dislocations (actually means hard-
ening). This velocity model is adopted as the
base of present model, but some modifications
will be given to it.

H,r 1s assumed to consist of two ingredients;
b vil+ H: (2.24)
where h, is the material constant, and 7y} the
maximum slip. H; is given by the following
evolution equation.

Hi=c(h*—H) I y;1 (2.25)

u
ks

is given by

where ¢, is the material constant, the

saturation value of H:, and 1 y;i
the following Eq.(2.26).
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1y =3 (2.26)

The evolution of internal stress due to dis-
location substructure is described by

ay=co(hi—ay) 7; (2.27)

where ¢, is the material constant, and /%; the
saturation value of internal Finally

introducing power #, the present slip velocity

stress.

model can be described in detail as follows,

7= sign(t;—a;)2b v,p,+0| 73]

EXP

(H)"+ (HoAn| 7Dl ci—ad " }

l [ ?

(2.28)
where the shear stress z; resolved on slip (77)
is expressed as follows.

T5= t?’(P,‘,‘U) (2.29)

3. Simulation of plastic spin

3.1 Material properties and loading condition

The present simulation is performed in an
aggregate of body centered crystal which is tried
to be a mild steel as far as possible. While
Burger’'s vectors, p, and p, are taken from the
reference 17), the other material constants are
fit
experimental curve, it can be done by adjusting,

given arbitrarily. If necessary to an

firstt H, and » to meet initial yielding, and
next the remainder to meet the post-vield curve.
The trial material constants are listed in Table
3.1. Initial orientations of grains are shown in
Fig.3.1. The markings depict <100> directions of
grains. Each point has three grains whose
orientations are set by the method of Asaro and

i1 1% . . .
Needlmann ', thus 153 grains are considered in

this study.

Table 3.1 Traial material constants
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Fig. 3.1 Initial orientaion of grain, <100> direction
The loading is applied by the prescribed
increments of deformation gradient which is
taken as simple shear,
1 0 0
F=1{dt 1 0 (3.1)
0 0 &

where 8%; is the same to the plastic deformation,



and ¢t is a time incement. It can be nearly
rate-independent plasticity with a small &8 At
present, 1.0E-4(/s) and 2.0E2(/s) are used for 8,
hereafter called as slow rate and fast rate,
respectively.

3.2 Results and discussions

Texturing has been regarded as one of the
sources of plastic spin. In what follows, it will
be emphasized that texturing is dominant in the
plastic spin sources, while the others are
secondary. And all discussions below will be
done under no polar stress.

Figure 3.2 shows a case of slow rate. The
abscissa represents accumulated shear strain. It
can be seen that non-dimensional plastic spin
(W/W) is not asymptotically increasing. This
tendency is not similar to the result of Taylor's
model in which it is increasing toward 1.0, for
in Ref. 19). It

oscillatory nature of spin ratio depends on the

instance is manifest that the
competition between plastic spin and total spin,
which means the different tendency comes from
the level of plastic spin. Thus two possibilities
can be thought; the present simulation gives
small plastic spin or Taylor’s model gives large
plastic spin. The gap can be attributed to the
methods of both models for selecting active slip.

80.

B0
ACT, SLIP(%)

(%)

40.

20.

(kg/mm2) ,

-20.

-40.

shear strain

Fig. 3.2 Simulation result for slow rate

Some sharp oscillations in curves of non-
dimensional plastic spin and stress may be due
to the abrupt changes of active slips. It is well
explained by the active slip curve which re-
presents the ratio of slip population currently
active to the total slip, where the activation of
slip is judged by the criterion ¥>107%(/s).
Sharp oscillations appear to be well synchronized
with those of the active slip curve. In the range
of shear strain < 1.0 where there are no sharp
fallings in the curve of active slip, such
oscillations can not be seen. It is thought that

texturing is responsible for those local sharp

fallings of active slip population. No such
falings can be found in Fig.3.7 which is
obtained under the condition that all grain

rotations are forced to be fixed.

On the other hand, Fig. 3.2 shows considerable
axial stresses at large strain, especially, ¢, is a
compression. In some torsion tests, for instances
Ref. 20),21), compressive axial stress can be
observed while axial movement is prohibited.
And it can be also seen the torque and axial
stress are fluctuating. The present simulation
shows similar behavior to those tests. Referring
to Fig.3.7, it can be understood that texturing is
an essential factor of those non-coaxial stresses.
And the comparison of shear stress curves in
Fig.3.2 and Fig.3.7 shows a geometrical soft-
ening effect.

Fig.3.3 of the case of fast rate shows similar
trends to Fig.3.2, but has less sharp oscillations.
Its non-dimensional plastic spin appears higher
than that Fig34 shows

comparison between two cases. The fast rate

of slow rate. its
has more delaved point at which the plastic spin
changes its direction. This rate dependency will
be discussed later.

Hardening effect on the spin ratio is given in
Fig.3.5. Dotted curves are reffered to the case of

7y =1000( Kg/ mm*) and solid curves, to the
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Fig. 35 Hardening effect

case of h,=2000(Ke/ mm®). It can be observed

the smaller hardening is, the larger non-

dimensional plastic spin and rate effect are. Both
effects, rate and hardening, can be interpreted in
a quarry, overstress; the larger overstress, the
larger spin ratio. How larger overstress causes
larger non-dimensional plastic spin will be
explained later.

The reverse loading effect is also investigated.
Its result can be found in Fig.3.6. Just after
loading reversed, the spin ratio jumps strikingly
and goes down rapidly. While the tension oo, is
the

pression ¢;; keeps its pace with further rate in

steeply decreasing to small level, com-
a certain range of deformation. It is interesting
in the behavior of oy just after loading is
reversed. This behavior as well as the jumping
of non-dimensional plastic spin can be explained
such that, by back stress, the pattern of active
slips is reconstructed to be more amiable to

them.
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Fig. 36 Reverse loading effect

Till now, some phenomena emerged from the
present simulation have been described and in-
terpreted. Texturing is crucial, precisely speak-
ing, the textured state of material is. Next it is
desiable to enhance it and to gain insight into
the plastic spin.

If macroscopic plastic spin(MPS) is regarded
as the average of grain spins and grain rotation
is evaluated by subtracting grain plastic spin
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(GPS) from macroscopic total spin(MTS), it is
natural that texturing can be the governing
factor for MPS. Here an attention should be
given to the fact that neither the conjugate force
of texturing nor internal stress(e.g., back stress)
is the driving force of plastic spin because it
does not urged by such dniving forces.

It is useful to classify two spins conceptually;
superimposed spin and derived one. While the
former is due to rigid body rotation, the latter, to
symmetrization. In elasticity, this classification is
useless because the distinction can not be
measured by material itself and two spins have
the same physical meaning. In plasticity, the
classification does make sense. It can be deriven
with a measurement, anyhow, because the mi-
crostructure of material has some information to
tell about plastic spin. The plastic spin neither
dissipates energy nor has physical meaning.
Thus it

constraint

is not subjected to thermodynamic

and there needs no thermodynamic
conjugation force. However, texturing dissipates
energy so that it has the conjugation force. In
fact, the relative rotation of grain to the sur-
achieved
localized

deformation in the vicinity of grain boundary

rounding, actually giving texturing, is
by the deformations such as highly

and/or crystal twinning®

Retumning to the origin of plastic spin, it can
be considered in two steps; grain level and
aggregate one. First, the plastic spin of a grain
mainly comes from different levels of induced
shear stresses on slips. Boukadia and Sidoroff™
showed this mechanism analyvtically. For com-
prehensive explanation, consider two groups of
slip system giving plastic spins with opposite
sign each other under the given loading. The
resultant plastic spin. namely GPS, is the sur-
vivor in the competition between two groups. In
this context, the induced shear stress on slip

makes a crucial role. The shear stress level of a

3 Ak %

o] A+ 7J

slip depends on the grain orentation and the
combination of stress components. The defor-
mation rate and hardening effect can be outlined
as follow. These effects shift the overstresses of
slips of both groups to higher levels, and the
shifting effect enlarges the unbalance of slip
velocity to yield the consequence because of
highly accelerated growth in the stress-slip
velocity curve.

Second, since MPS is got by averaging whole
GPS controlled by grain orientation, the re-
arranged pattern of its orientation might be a
dominant factor as well as the ingredient of
stress tensor. From Fig.3.3 and Fig.3.7, it can be
seen that these two factors have a greater effect
than hardening or rate effect does.

80.

1ot
80 Rt

012
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40 .

20.

wiw(k) On o
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-20.

-40.

shear strain

Fig. 3.7 Simulation result for no grain rotation

As what being associated with the effect of
stress tensor ingredient, considerable non-coaxial
stresses (o], 0») are observed as shown in
Fig.3.2 and Fig.3.3. It implies that the non-
coaxiality in plasticity is an urgent problem to
be tackled. Therefore, all spin models ever sug-
gested might be unfair when the non-coaxiality
is considered.

Here are some brief comments to the isotropic
function representation(IFR). The back stress is

regarded as a parameter representing an ar-
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rangement of grain orientation, not a driving
force as stressed previously. It can be agreed, to
some  extent, the back stress 1s such a
parameter. But the current frame of IFR hardly
seems to be general enough. It will fail, for
example, to follow the plastic spin after the
reverse loading as shown in Fig. 3.6 so that IFR
wants a modification as well as the non-
coaxiality.

Finally, there has issued a debate whether the
equation for plastic spin is a constitutive one or
a kinematical function. Since Kratochvil'' rec-
ognized the need for another constitutive equa-
tion for the plastic spin, several authors have
thought of it as a constitutive one. Recently,
some authors™ argued that it is a Kinematical
function. Both seems to be still suspected in the
following viewpoints. In spite of the nature of
plastic spin discussed so far in this paper and
the fact that IFR has a stretch rate, can the
equation be regarded as a constitutive equation?
Rather a kinematical function? The present
simulation and discussion states that the plastic
spin can not be given by the complex of
kinematic quantities only. In our opinion, it
prefers to call such a class of equation as a
constitutive kinematic equation or a constitutive

constraint.

4. Summary and conclusion

A simple static accommodation model was
applied to the stmulation of plastic spin of body
centered polycrystal in simple shear. The effects,
such as texturing, hardening, deformation rate,
and reserve loading, were investigated.

The present simulation gives fluctuating non-
dimenstonal plastic spins contrary to Taylor's
model. This discordance is expected to lie on the
active slip selection method. Texturing itself is

not effective on the plastic spin but the rear-

ranged pattern of its onentation 1s. As a matter
of fact, the orientation pattern of grains is a
significant factor for the plastic spin. It is also
the origin of the considerable non-coaxiality
observed in the present simulation. The in-
gredient of stress tensor and the induced non-
coaxiality are the important factors as well as
the orientation pattern.

The non-dimensional plastic spin depends on
deformation rate and hardening, but these effects
are secondhand. The load reversing is followed
by the jumping of non-dimensional plastic spin
and steep rate of compression. These phenomena
can not be described by the existing plastic spin
models. Though conventional plastic spin models
are thought to be effective to some extent, thev
are hardly regarded as general ones. Further
more they can not be justified until a con-
sideration is given to the induced non-coaxiality.

Finally, without a couple of stresse the plastic
spin needs no conjugate force, It also needs not
to be subjected to thermodynamic constraint as
stated in Ref.24). It should not be confused that
the conjugate force of texturing has little effect
to the plastic spin in spite of the significant
relationship between the plastic spin and tex-
turing. Assumingly the plastic spin may be e-
valuated independently by a constitutive equa-
tion, but it has a relationship with stretch tensor.
However, the relations can not be given by the
complex of kinematic quantities only. It seems to
be preferable to call these classes of equations

other titles.
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