Decomposition of T-generalized State Machines

Sung-Jin Cho*, Jae-Gyeom Kim**, Seok-Tae Kim***

**Supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation, 1996.

ABSTRACT

In this paper we introduce the notions of T-generalized state machines and primary submachines of T-generalized state machine and obtain a decomposition theorem for T-generalized state machine in terms of primary submachines.

I. Introduction

Automata theory is one of basic and important theories in computer science. Following Zadeh [8] who introduced the concept of a fuzzy set, Wee [7] introduced the idea of fuzzy automata. There has been considerable growth in the area of fuzzy automata [2]. The use of algebraic techniques in determining the structure of automata has been significant. However, in fuzzy automata, the algebraic approach is lacking. Cho et al. [1] and Kim et al. [3] introduced the notions of TL-finite state machine and TL-transformation semigroup that are extensions of fuzzy state machine and fuzzy transformation semigroup, respectively. In [5] Malik et al. introduced the notions of submachines, primary submachines of fuzzy finite state machines and obtained a decomposition theorem for fuzzy finite state machine in terms of primary submachines. In this paper we introduce the notions of T-generalized state machines and primary

II. T-generalized state machines

For a state machine $(Q, X, \tau), \tau: Q \times X \rightarrow Q$ can be

regarded as a fuzzy subset τ of $Q \times X \times Q$ defined by τ (p, a, q) = 1 if $\tau(p, a) = q$ and $\tau(p, a, q) = 0$ otherwise, and $\sum_{q \in Q} \tau(p, a, q) \le 1$ for all $p \in Q$ and $a \in X$. Conversely, for a triple (Q, X, τ) with a fuzzy subset τ of $Q \times X \times Q$ such that $\tau(Q \times X \times Q)$ and $\sum_{q \in Q} \tau(p, a, q)$ ≤ 1 for all $p \in Q$ and $a \in X$, τ can be regarded as a partial function $\tau: Q \times X \to Q$ defined by $\tau(p, a) = q$ if $\tau(p, a, q) = 1$. So the concept of state machines and the concept of fuzzy subsets with some restrictions can be identified. Now we can naturally fuzzify the concept of state machines.

Definition 2.1. A triple $M = (Q, X, \tau)$ where Q and

submachines of T-generalized state machines and obtain a decompostion theorem for T-generalized state machine in terms of primary submachines. And we investigate some of algebraic properties of them.

^{*}Dept. of Applied Mathematics, Pukyong National University

[&]quot;Dept. of Mathematics, Kyungsung University

^{***} Dept. of Telematics Engineering, Pukyong National University

X are finite nonempty sets and τ is a fuzzy subset of $Q \times X \times Q$, i.e., τ is a function from $Q \times X \times Q$ to [0, 1], is called a generalized state machine if $\sum_{q \in Q} \tau(p, a, q) \le 1$ for all $p \in Q$ and $a \in X$. If $\sum_{q \in Q} \tau(p, a, q) = 1$ for all $p \in Q$ and $a \in X$, then M is said to be complete.

Note that the concept of generalized state machines is different from the concept of fuzzy finite state machines of Malik et al. [4] that also is a fuzzification of the concept of state machines. Their notion is based on the concept of fuzzy automata introduced by Wee [7]. While a generalized state machine (Q, X, τ) with τ $(Q \times X \times Q) \subset \{0, 1\}$ can be always regarded as a state machine, a fuzzy finite state machine (Q, X, τ) with τ $(Q \times X \times Q) \subset \{0, 1\}$ can not be regarded as a state machine generally. So the concept of generalized state machines is a generalization of the concept of state machines, whereas the concept of fuzzy finite state machines of Malik et al. [4] may not be considered as a generalization of the concept of state machines in a certain sense. This means that the concept of generalized state machines is a more adequate fuzzification of the concept of state machines than the concept of fuzzy finite state machines.

Let $M = (Q, X, \tau)$ be a generalized state machine. Then Q is called the set of states and X is called the set of input symbols. Let X^+ denote the set of all words of elements of X of finite length with empty word λ .

Formally, every incomplete generalized state machine can be extended to a complete generalized state machine as follows:

Definition 2.2. Let $M = (Q, X, \tau)$ be an incomplete generalized state machine. Let z be a state not in Q. The completion M^c of M is the complete generalized state machine (Q', X, τ') given by $Q' = Q \cup \{z\}$ and

$$\tau'(p', a, q') = \begin{cases} \tau'(p', a, q') & \text{if } p', q' \in Q \\ 1 - \sum_{q \in Q} \tau(p', a, q) & \text{if } p' \in Q \text{ and } q' = z \\ 0 & \text{if } p' = z \text{ and } q' \in Q \\ 1 & \text{if } p' = z \text{ and } q' = z \end{cases}$$

for all $a \in X$. The new state z is called the sink state of M^c . If M is complete, then we take M itself as M^c .

Definition 2.3 [6]. A binary operation T on [0, 1] is called a t-norm if

- (1) T(a, 1) = a,
- $(2)T(a, b) \le T(a, c)$ whenever $b \le c$,
- (3) T(a, b) = T(b, a),
- (4) T(a, T(b, c)) = T(T(a, b), c)

for all $a, b, c \in [0, 1]$.

The maximum and the minimum will be written as \vee and \wedge , respectively. T is clearly \vee -distributive, i. e., $T(a, b \wedge c) = T(a, b) \vee T(a, c)$ for all $a, b, c \in [0, 1]$. Define T_0 on [0, 1] by $T_0(a, 1) = a = T_0(1, a)$ and $T_0(a, b) = 0$ if $a \neq 1$ and $b \neq 1$ for all $a, b \in [0, 1]$. Then \wedge is the greatest t-norm on [0, 1] and T_0 is the least t-norm on [0, 1], i.e., for any t-norm T, $\wedge(a, b) \geq T(a, b) \geq T_0(a, b)$ for all $a, b \in [0, 1]$.

T will always mean a t-norm on [0, 1]. T is said to be positive-definite if T(a, b) > 0 for all $a \ne 0$, $b \ne 0$. Throughout this paper, T shall mean a positive-definite unless otherwise specified. By an abuse of notation we will denote $T(a_1, T(a_2, \dots, T(a_{n-2}, T(a_{n-1}, a_n) \dots)))$ by $T(a_1, \dots, a_n)$ where $a_1, \dots, a_n \in [0, 1]$. The legitimacy of this abuse is ensured by the associativity of T(Definition 2.3(4)).

Definition 2.4. Let $M = (Q, X, \tau)$ be a generalized state machine. Define $\tau^+: Q \times X^+ \times Q \rightarrow [0, 1]$ by

$$\tau^{+}(p, \lambda, q) = \begin{cases} 1 & \text{if } p = q \\ 0 & \text{if } p \neq q \end{cases}$$

and

$$\tau^{+}(p, a_{1} \cdots a_{n}, q)$$

$$= \bigvee \{ T(\tau(p, a_{1}, q_{1}), \tau(q_{1}, a_{2}, q_{2}), \cdots, \tau(q_{n-2}, a_{n-1}, q_{n-1}), \tau(q_{n-1}, a_{n}, q)) | q_{i} \in Q \}$$

where $p, q \in Q$ and $a_1, \dots, a_n \in X$. When T is applied to M as above, M is called a T-generalized state machine.

Hereafter a generalized state machine will always be written as a *T*-generalized state machine because a generalized state machine always induces a *T*-generalized state machine as in Definition 2.4.

Proposition 2.5. Let $M = (Q, X, \tau)$ be a T-generalized state machine. Then

$$\tau^{+}(p, xy, q) = \bigvee \{T(\tau^{+}(p, x, r), \tau^{+}(r, y, q)) | r \in Q \}$$

for all $p, q \in Q$ and $x, y \in X^+$.

Proof. Let $p, q \in Q$. Let $x = a_1 \cdots a_n$ and $y = b_1 \cdots b_m$ with $a_1, \dots, a_n, b_1, \dots, b_m \in X$. Then

II. Decomposition of T-generalized state machines

Definition 3.1. Let $M = (Q, X, \tau)$ be a T-generalized state machine. Let $p, q \in Q$. p is called an immediate successor of q if there exists $a \in X$ such that $\tau(q, a, p) > 0$. p is called a successor of q if there exists $x \in X^+$ such that $\tau^+(q, x, p) > 0$.

Proposition 3.2. Let $M = (Q, X, \tau)$ be a *T*-generalized state machine. Let $p, q, r \in Q$. Then

- (1)q is a successor of q,
- (2) if p is a successor of q and r is a successor of p, then r is a successor of q.

Proof. (1) Since $\tau^+(q, \lambda, q) = 1 > 0$, q is a successor of q.

(2) Let $x, y \in X^+$ so that $\tau^+(q, x, p) > 0$ and $\tau^+(p, y, r) > 0$. Then by Propostion 2.5 we have

$$\tau^{+}(q, xy, r) = \bigvee \{ T(\tau^{+}(q, x, s), \tau^{+}(s, y, r)) | s \in Q \}$$

$$\geq T(\tau^{+}(q, x, p), \tau^{+}(p, y, r))$$

$$> 0.$$

So we have (2).

When $M = (Q, X, \tau)$ be a T-generalized state machine, we denote $S_M(q)$ the set of all successors of q, where $q \in Q$.

Definition 3.3. Let $M = (Q, X, \tau)$ be a *T*-generalized state machine. Let $R \subset Q$. The set of all successors of R, denoted by $S_M(R)$, in Q is defined to be the set

$$S_M(R) = \bigcup \{ S_M(q) | q \in R \}.$$

We will write S(q) and S(R) for $S_M(q)$ and $S_M(R)$, respectively.

Theorem 3.4. Let $M = (Q, X, \tau)$ be a *T*-generalized state machine. Let $A, B \subseteq Q$. Then

- (1) if $A \subset B$, then $S(A) \subset S(B)$,
- $(2) A \subset S(A),$
- (3) S(S(A)) = S(A),
- $(4) S(A \cup B) = S(A) \cup S(B),$
- $(5) S(A \cap B) \subset S(A) \cap S(B)$.

Proof. The proofs of (1), (2), (4) and (5) are straightforward.

(3) Clearly $S(A) \subset S(S(A))$. Let $q \in S(p)$ for some $p \in S(A)$. Since $p \in S(A)$, $p \in S(r)$ for some $r \in A$. So $q \in S(A)$

 $\in S(r)$ by Proposition 3.2(2). Thus $q \in S(A)$ because $r \in A$. Hence $S(S(A)) \subset S(A)$.

Definition 3.5. Let $M = (Q, X, \tau)$ be a T-generalized state machine. Let $R \subset Q$. Let ν be a fuzzy subset of $R \times X \times R$ and let $N = (R, X, \nu)$. The T-generalized state machine N is called a submachine of M if

- $(1)\tau|_{R\times X\times R}=\nu,$
- $(2) S_M(R) \subset R$.

For the convenience sake, we assume that $\phi = (\phi, X, \nu)$ is a submachine of a T-generalized state machine M. A submachine $N = (R, X, \nu)$ of $M = (Q, X, \tau)$ is called proper if $R \neq Q$ and $R \neq \phi$. Clearly, if K is a submachine of N and N is a submachine of M, then K is a submachine of M. Note that the number of all submachines of M is finite because O is finite.

Definition 3.6. Let $M = (Q, X, \tau)$ be a T-generalized state machine. Let $R \subset Q$ and $\{N_i = (Q_i, X, \tau_i) | i \in \Lambda\}$ be the collection of all submachines of M whose state set contains R. Define $\langle R \rangle = \bigcap_{i \in \Lambda} \{N_i | i \in \Lambda\} = (\bigcap_{i \in \Lambda} Q_i, X, \land_{i \in \Lambda} \tau_i)$. Then $\langle R \rangle$ is called the submachine generated by R.

In Definition 3.6, $\langle R \rangle$ is clearly the smallest submachine of M whose state set contains R. The union $\bigcup_{i \in A} N_i$ of a collection $\{N_i = (Q_i, X, \tau_i) | i \in A\}$ of submachines of M is $(\bigcup_{i \in A} Q_i, X, \nu)$ where $\nu = \tau |_{(\bigcup_{i \in A} R_i \times X \times \bigcup_{i \in A} Q_i)}$. The union of submachines of M is clearly a submachine of M.

Definition 3.7. Let $M = (Q, X, \tau)$ be a *T*-generalized state machine. Let *P* be a submachine of *M*. Then *P* is called a primary submachine of *M* if

- (1) There exists $q \in Q$ such that $P = \langle q \rangle$,
- (2) For all $s \in Q$ if $P \subset \langle s \rangle$, then $P = \langle s \rangle$.

Lemma 3.8. Let $M = (Q, X, \tau)$ be a *T*-generalized state machine. Let $R \subset Q$. Then $(S(R), X, \tau|_{S(R) \times X \times S(R)})$

is a submachine of M.

Proof. It is clear.

Lemma 3.9. Let $M = (Q, X, \tau)$ be a T-generalized state machine. Let $R \subset Q$. Then $\langle R \rangle = (S(R), X, \tau |_{S(R) \times X \times S(R)})$.

Proof. By Definition 3.6 $\langle R \rangle = (\bigcap_{i \in A} Q_i, X, \land_{i \in A} \tau_i)$, where $\{N_i | i \in A\}$ is the collection of all submachines of M whose state set contains R and $N_i = (Q_i, X, \tau_i)$, $i \in A$. It suffices to show that $S(R) = \bigcap_{i \in A} Q_i$. Since $(S(R), X, \tau|_{S(R) \times X \times S(R)})$ is a submachine of M such that $R \subset S(R)$ by Lemma 3.8, $\bigcap_{i \in A} Q_i \subset S(R)$. Let $p \in S(R)$. Then there exist $r \in R$ and $x \in X^+$ such that $\tau^+(r, x, p) > 0$. Now $r \in \bigcap_{i \in A} Q_i$. Since $\langle R \rangle$ is a submachine of M, $p \in S(\bigcap_{i \in A} Q_i) \subset \bigcap_{i \in A} Q_i$. Thus $S(R) \subset \bigcap_{i \in A} Q_i$. Hence $S(R) = \bigcap_{i \in A} Q_i$.

Theorem 3.10. Let $M = (Q, X, \tau)$ be a *T*-generalized state machine. Let $P = \{P_1, P_2, \dots, P_n\}$ be the set of all distinct primary submachines of M. Then

$$(1) M = \bigcup_{i=1}^{n} P_i,$$

$$(2) M \neq \bigcup_{i=1}^{n} P_i \text{ for any } j \in \{1, 2, \dots, n\}.$$

Proof. (1) Let $q \in Q$. Then by Lemma 3.8 and Lemma 3.9 $\langle q \rangle = (S(q), X, \tau|_{S(q) \times X \times S(q)})$ is a submachine of M. Thus either $\langle q \rangle \in P$ or there exists $p \in Q \setminus S(q)$ such that $\langle q \rangle \in \langle p \rangle$. Since Q is finite, either $\langle q \rangle \in P$ or there exists an integer $k(1 \le k \le n)$ such that $\langle q \rangle \in \langle p_k \rangle \in P$. Thus $q \in \bigcup_{i=1}^n S(p_i)$ where $P_i = \langle p_i \rangle$. Hence $M = \bigcup_{i=1}^n P_i$.

(2) Let
$$N = \bigcup_{\substack{i=1\\i\neq j}}^{n} P_i$$
 and let $P_i = \langle p_j \rangle$. If $p_j = \bigcup_{\substack{i=1\\i\neq j}}^{n} S(p_i)$,

then $p_j \in S(p_i)$ for some $i \neq j$. Hence $P_j = \langle p_j \rangle \subset P_j$. This is a contradiction because $P_j \neq P_i$. Hence $M \neq N$.

Let $M = (Q, X, \tau)$ be a T-generalized state machine. M is called singly generated if there exists $q \in Q$ such that $M = \langle \{q\} \rangle$.

Corollary 3.11. Let $M = (Q, X, \tau)$ be a T-generalized state machine. Then every singly generated submachine of $M \neq \phi$ is a submachine of a primary submachine of M.

Proof. By Theorem 3.10 $M = \bigcup_{i=1}^{n} P_i$ where P_i is a primary submachine of M. Moreover $Q = \bigcup_{i=1}^{n} S(p_i)$ where $P_i = \langle p_i \rangle$, $i = 1, 2, \dots, n$. Let A be a singly generated submachine of M. Then $A = \langle a \rangle$, $a \in S(p_i)$ for some i. Hence A is a submachine of P_i .

Definition 3.12. A *T*-generalized state machine $M = (Q, X, \tau)$ is said to be *T*-generalized retrievable if it satisfies the following; for $p, q \in Q$ if there exists $y \in X^+$ such that $\tau^+(q, y, p) > 0$, then there exists $x \in X^+$ such that $\tau^+(p, x, q) > 0$; or equivalently, $q \in S(p)$ if and only if $p \in S(q)$ where $p, q \in Q$.

Definition 3.13. A nonempty submachine $N = (R, X, \nu)$ of a *T*-generalized state machine $M = (Q, X, \tau)$ is said to be *T*-generalized separated if $S(Q \setminus R) = Q \setminus R$.

Proposition 3.14. Let $N=(R, X, \nu)$ be a nonempty submachine of a T-generalized state machine $M=(Q, X, \tau)$. Then N is T-generalized separated if and only if $S(Q \setminus R) = Q \setminus R$.

Proof. Suppose N is T-generalized separated. Let $q \in S(Q \setminus R)$. Then $q \neq R$. Thus $q \in Q \setminus R$. So $S(Q \setminus R) = Q \setminus R$. Hence $S(Q \setminus R) \cap R = \emptyset$. Conversely, suppose that $S(Q \setminus R) = Q \setminus R$. Then $S(Q \setminus R) \cap R = \emptyset$. So N is T-generalized separated.

Definition 3.15. A T-generalized state machine M= (Q, X, τ) is said to be T-generalized connected if M has no T-generalized separated proper submachines.

Definition 3.16. A T-generalized state machine $M = (Q, X, \tau)$ is called strongly T-generalized connected if $p \in S(q)$ for all $p, q \in Q$.

Proposition 3.17. Let $M = (Q, X, \tau)$ be a T-generalized state machine. Then M is strongly T-generalized connected if and only if M has no proper submachines.

Proof. Suppose M is strongly T-generalized connected. Let $N = (R, X, \nu)$ be a submachine of M such that $R \neq \emptyset$. Then there exists $q \in R$. Let $p \in Q$. Since M is strongly T-generalized connected, $p \in S(q)$. Hence $p \in S(q) \subset S(R) \subset R$ because N is a submachine of M. Thus R = Q and so M = N. Conversely, suppose M has no proper submachines. Let $p, q \in Q$ and let $N = (S(q), X, \nu)$ where $\nu = \tau \mid_{S(q) \times X \times S(q)}$. Then N is a submachine of M and $S(q) \neq \emptyset$. Hence S(q) = Q. Thus $p \in S(q)$. Hence M is strongly T-generalized connected.

Theorem 3.18. Let $M=(Q, X, \tau)$ be a *T*-generalized state machine. Then the following are equivalent:

- (1) M is T-generalized retrievable.
- (2) M is the union of strongly T-generalized connected submachines of M.

Proof. The proof is similar to the proof of Theorem 4.8 [3].

Theorem 3.19. Let $M=(Q, X, \tau)$ be a T-generalized state machine. Then the following are equivalent:

- (1) M is T-generalized retrievable.
- (2) Every primary submachine of M is strongly T-generalized connected.

Proof. (1) \Rightarrow (2): Let P be a primary submachine of M. Then $P = \langle p \rangle$ for some $p \in Q$. Let r, $t \in S(p)$. Then there exist x, $y \in X^+$ such that $\tau^+(p, x, r) > 0$ and $\tau^+(p, y, t) > 0$. Since M is T-generalized retrievable, there exist u, $v \in X^+$ such that $\tau^+(r, u, p) > 0$ and $\tau^+(t, v, p) > 0$. Thus by Proposition 2.5 $\tau^+(t, vx, r) = \bigvee \{T(\tau^+(t, v, s), \tau^+(s, x, r)) | s \in Q\} > 0$. Hence r

 $\in S(t)$, i.e., P is strongly T-generalized connected.

(2) \Rightarrow (1): From Theorem 3.10 $M = \bigcup_{i=1}^{n} P_i$ where P_i are primary submachines of M. Since P_i are strongly T-generalized connected, M is the union of strongly T-generalized connected submachines of M. Hence by Theorem 3.18 M is T-generalized retrievable.

Lemma 3.20. Let $M=(Q, X, \tau)$ be a *T*-generalized state machine. Then M has a strongly T-generalized connected submachine.

Proof. We prove the result by induction on |Q| = n. If n = 1, then the result is obvious. Suppose the result is true for all T-generalized state machines $N = (R, X, \nu)$ such that |R| < n. Let $q \in Q$. Then $M' = (S(q), X, \tau|_{S(q) \times X \times S(q)})$ is a submachine of M by Lemma 3.8. If M' is strongly T-generalized connected, the result follows. Suppose that M' is not strongly T-generalized connected. Then there exists $p \in S(q)$ such that $q \notin S(p)$ and hence $S(p) \subset S(q)$. Now |S(p)| < n. Hence by induction hypothesis the T-generalized state machine $(S(p), X, \tau|_{S(p) \times X \times S(p)})$ has a strongly T-generalized connected submachine.

Theorem 3.21. Let $M=(Q, X, \tau)$ be a T-generalized state machine. Then the following are equivalent:

- (1) M is T-generalized retrievable.
- (2) Every singly generated submachine of M is primary.
- (3) Every nonempty T-generalized connected submachine of M is primary.

Proof. (1) \Rightarrow (2):Let $N = \langle q \rangle$ be a singly generated submachine of M. From Theorem 3.10 $M = \bigcup_{i=1}^{n} P_i$ where the P_i are primary submachines of M. By Theorem 3.19, the P_i are strongly T-generalized connected. Then $\langle q \rangle \subset P_i$ for some i. By Proposition 3.17 $\langle q \rangle = P_i$. Thus N is primary.

(2) ⇒ (1): Since every singly generated submachine

of M is primary, every singly generated submachine of M is strongly T-generalized connected. Thus every primary submachine of M is strongly T-generalized connected. Hence by Lemma 3.20 M is T-generalized retrievable.

 $(2)\Rightarrow (3)$: Let $N=(R,\ X,\ \nu)$ be a nonempty T-generalized connected submachine of M. Let $q\in Q$. Suppose $S(q)\neq R$. Since N is T-generalized connected, $S(R\setminus S(q))\cap S(q)\neq \emptyset$. Let $r\in S(R\setminus S(q))\cap S(q)$. Then $r\in S(t)$ for some $t\in R\setminus S(q)$ and $r\in S(q)$. Now $\langle r\rangle \subset \langle t\rangle$ and $\langle r\rangle \subset \langle q\rangle$. Since $\langle r\rangle$ is primary, $\langle t\rangle = \langle r\rangle = \langle q\rangle$. Thus $t\in S(q)$ which is a contradiction. Hence $N=\langle q\rangle$ and so N is primary.

 $(3) \Rightarrow (2)$: Let $N = \langle s \rangle$ be a singly generated submachine. By Lemma 3.20 N has a strongly T-generalized connected submachine $B = \langle r \rangle$, say. Then B is T-generalized connected and hence primary. Thus $\langle r \rangle = \langle s \rangle = N$. Hence N is primary.

Lemma 3.22. Let $M=(Q, X, \tau)$ be a T-generalized state machine and let $N=(R, X, \nu)$ be a T-generalized separated submachine of M. Then every primary submachine of N is also a primary submachine of M.

Proof. Let $\langle q \rangle$ be a primary submachine of N. Suppose $\langle q \rangle$ is not a primary submachine of M. Then there exists $p \in Q \setminus S(q)$ such that $\langle q \rangle \subset \langle p \rangle$. Clearly $p \in R$. Thus $p \in Q \setminus R$. Since $q \in S(p)$, $q \in S(Q \setminus R)$. Thus $q \in S(Q \setminus R) \cap R$. This is a contradiction because N is T-generalized separated. Hence $\langle q \rangle$ is a primary submachine of M.

Theorem 3.23. Let $M=(Q, X, \tau)$ be a T-generalized state machine and let $N_i=(R_i, X, \nu_i)$, $i=1, 2, \dots, n$ be the primary submachines of M. Then a proper submachine $N=(R, X, \nu)$ of M is T-generalized separated if and only if for some $J\subset\{1, 2, \dots, n\}$, $J\neq \emptyset$, $Q\setminus R=\bigcup_{i\in I}R_i$.

Proof. Suppose $N = (R, X, \nu)$ be a proper T-generalized separated submachine of M. Then $S(Q \setminus R) =$

 $Q \setminus R$. Since N is proper, $\langle Q \setminus R \rangle$ is nonempty. Thus $\langle Q \setminus R \rangle$ is the union of all its primary submachines by Theorem 3.10. Since $\langle Q \setminus R \rangle$ is T-generalized separated, by Lemma 3.22 every primary submachine of $\langle Q \setminus R \rangle$ is a primary submachine of M. Thus $S(Q \setminus R) = \bigcup_{i \in J} R_i$ for some $J \subset \{1, 2, \dots, n\}$, $J \neq \emptyset$. Since $Q \setminus R = S(Q \setminus R)$ by Proposition 3.14, $Q \setminus R = \bigcup_{i \in J} R_i$. Conversely, let $N = \langle R, X, \nu \rangle$ be a proper submachine of M such that $Q \setminus R = \bigcup_{i \in J} R_i$ for some $J \subset \{1, 2, \dots, n\}$, $J \neq \emptyset$. Since $Q \setminus R = \bigcup_{i \in J} R_i$ for some $J \subset \{1, 2, \dots, n\}$, $J \neq \emptyset$. Since $Q \setminus R = \bigcup_{i \in J} R_i$ for some $J \subset \{1, 2, \dots, n\}$, $J \neq \emptyset$. Since $Q \setminus R = S(Q \setminus R)$, $Q \setminus R = \bigcup_{i \in J} R_i$. Since N_i is a submachine of M, $S(Q \setminus R) = S(\bigcup_{i \in J} R_i) = \bigcup_{i \in J} S(R_i) = \bigcup_{i \in J} R_i = Q \setminus R$ by Theorem 3.4. Hence N is T-generalized separated.

Corollary 3.24. Let $M = (Q, X, \tau)$ be a T-generalized state machine. Then M is T-generalized connected if and only if M has no proper submachine $N = (R, X, \nu)$ such that $Q \setminus R$ is the union of the sets of states of all primary submachines of M.

Proof. It is straightforward.

References

- S.J. Cho, J.G. Kim and S.T. Kim, TL-state machines and TL-transformation semigroups, J. Fuzzy
 Logic and Intelligent Systems 5(4)(1995), 3-11.
- 2. A. Kandel and S.C. Lee, Fuzzy switching and automata: Theory and applications, (Crane Russak, New York, 1980).
- J.G. Kim, S.J. Cho and S.T. Kim, On TL-finite state machines, Korean J. Com. and Appl. Math. 3 (1)(1996), 1-10.

- D.S. Malik, J.N. Mordeson and M.K. Sen, Semigroups of fuzzy finite state machines, Advances in Fuzzy Theory and Technology 2, ed. P.P. Wang, 87-98, 1994.
- D.S. Malik, J.N. Mordeson and M.K. Sen, Submachines of fuzzy finite state machines, J. Fuzzy Math. 2(1994), 781-792.
- B. Schweizer and A. Sklar, Satistical metric spaces, Pacific J. Math. 10(1960) 313-334.
- W.G. Wee, On generalizations of adaptive algorithm and application of the fuzzy sets concept to pattern classification, *Ph.D. Thesis*, Purdue Univ., June, 1967.
- 8. L.A. Zadeh, Fuzzy sets, *Inform. Control* 8(1965) 338-365.

조 성 진(Sung Jin Cho) 정회원 1979년:강원대학교 수학교육과 (이학사)

1981년:고려대학교 수학과 대학원 (이학석사)

1988년:고려대학교 수학과 대학원 (이학박사)

1988년~현재:부경대학교 자연과학대학 응용수학과 재직(부교수)

김 재 겸(Jae Gyeom Kim)

정회원

1981년:고려대학교 수학과(이학사)

1983년:고려대학교 수학과 대학원(이학석사)

1987년:고려대학교 수학과 대학원(이학박사)

1989년~현재:경성대학교 이과대학 수학과 재직(부 교수)

김 석 태(Seok Tae Kim) 정회원 1983년: 광운대학교 전자공학과 졸업(공학사)

1988년:경도공예섬유대학 전자공 학과 졸업(공학석사)

1991년: 오사카대학 통신공학과 졸업(공학박사)

1991년~현재 :부경대학교 정보통신 공학과 재직(조교수)