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ABSTRACT

In this paper we introduce the notions of T-generalized state machines and primary submachines of T-generalized

state machines and obtain a decomposition theorem for 7T-generalized state machine in terms of primary submach-

ines.

1. Introduction

Automata theory is one of basic and important
theories in computer science. Following Zadeh [8] who
introduced the concept of a fuzzy set, Wee (7] introd-
uced the idea of fuzzy automata. There has been con-
siderable growth in the area of fuzzy automata [2].
The use of algebraic techniques in determining the
structure of automata has been significant. However,
in fuzzy automata, the algebraic approach is lacking.
Cho et al. [1] and Kim et al. [3] introduced the
notions of TL-finite state machine and T'L-transform-
ation semigroup that are extensions of fuzzy state ma-
chine and fuzzy transformation semigroup, respect-
ively. In [5] Malik et al. introduced the notions of
submachines, primary submachines of fuzzy finite
state machines and obtained a decomposition the-
orem for fuzzy finite state machine in terms of pri-
mary submachines. In this paper we introduce the

notions of T-generalized state machines and primary
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submachines of T-generalized state machines and ob-
tain a decompostion theorem for T-generalized state
machine in terms of primary submachines. And we in-

vestigate some of algebraic properties of them.
[I. T -generalized state machines

For a state machine (Q, X, 1), 1:Q@XX—Q can be
regarded as a fuzzy subset t of Q XX X Q defined by ©
0, a, 9=1if 1(p, @)=q and (P, @, q) =0 otherwise,

and 2 2(p,a,q)<1forall p€Q and a € X. Con-

q€¢Q

versely, for a triple (Q, X, 1) with a fuzzy subset 7 of

OX XX Q such that (@Xx XX Q) and Y, 1(p, a, q)

4€Q
<1 for all p€Q and a€ X, 7 can be regarded as a
partial function 1:Q X X—Q defined by ©(p, a)=q if
(p, a, @)=1. So the concept of state machines and
the concept of fuzzy subsets with some restrictions
can be identified. Now we can naturally fuzzify the

concept of state machines.

Definition 2.1. A triple M =(Q, X, 1) where Q and
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X are finite nonempty sets and t is a fuzzy subset of
OXXXQ, ie., tis a function from OXXXQ to [0, 1],

is called a generalized state machine if Y. (p, a, @)
a€Q

<1forallpeQand aeX. If X «p, a, g=1 for

q9€Q

all p€ Q and @€ X, then M is said to be complete.

Note that the concept of generalized state machines
is different from the concept of fuzzy finite state ma-
chines of Malik et al. [4] that also is a fuzzification of
the concept of state machines. Their notion is based
on the concept of fuzzy automata introduced by Wee
[7]. While a generalized state machine (Q, X, ) with t
(@XXXQ)C {0, 1} can be always regarded as a state
machine, a fuzzy finite state machine (Q, X, ) with ¢
(OXXxQ)C{0, 1} can not be regarded as a state
machine generally. So the concept of generalized state
machines is a generalization of the concept of state
machines, whereas the concept of fuzzy finite state
machines of Malik et al. [4] may not be considered as
a generalization of the concept of state machines in a
certain sense. This means that the concept of gener-
alized state machines is a more adequate fuzzification
of the concept of state machines than the concept of

fuzzy finite state machines.

Let M=(Q, X, ©) be a generalized state machine.
Then Q is called the set of states and X is called the
set of input symbols. Let X* denote the set of all
words of elements of X of finite length with empty
word A.

Formally, every incomplete generalized state ma-
chine can be extended to a complete generalized state

machine as follows:

Definition 2.2. Let M =(Q, X, 1) be an incomplete
generalized state machine. Let z be a state not in Q.
The completion M° of M is the complete generalized
state machine (Q”, X, °) given by Q’=Q U{z} and
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7@, a,q) ifp,q’€Q
op 1-3 p,aq ifp'€Qandg’ =z
(P a,q)= q€Q
0 ifp’=zand ¢g’€Q

ifp’=zand ¢g’'=z

for all € X. The new state 2 is called the sink state
of M°. If M is complete, then we take M itself as M*.

Definition 2.3 [6]. A binary operation T on [0, 1] is
called a #-norm if

T, 1) =aq,

Q) T(a, b) < T(a, c) whenever b<c,

) T(a, b)=T(, a),

@ T(a, T, 0) =T(T(a, b), ©)
for all @, b, c€ 0, 1].

The maximum and the minimum will be written as
V and A, respectively. T is clearly V-distributive, i.
e, T(a, bAc)=T(a, )V T(a, c) for all @, b, c €0, 1].
Define T, on [0, 1] by Tola, 1) =a=T1, a) and T(e,
b)=0if a#1 and b#1 for all @, b0, 1]. Then A is
the greatest #norm on [0, 1] and T, is the least -
norm on [0, 1], i.e., for any f-norm T, A(a, b) = T(a,
b)=>Tola, b) for all a, be [0, 1].

T will always mean a £-norm on [0, 1]. 7 is said to
be positive-definite if T(a, 5)>0 for all a#0, b+#0.
Throughout this paper, T shall mean a positive-defi-
nite unless otherwise specified. By an abuse of no-
e, T(@n-2, T(@n-1,
a.) ) by T(ay, -+, a,) where ay, -+, a,€ [0, 1]. The
legitimacy of this abuse is ensured by the associativity
of T(Definition 2.3(4)).

tation we will denote T(a,, T(a2,

Definition 2.4. Let M =(Q, X, 1) be a generalized
state machine. Define t*: QXX+t xQ—[0, 1] by

1 if p=¢q

+ =
(@, 49 0 if prg

and
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At+(p, a eas an, q)
=V{TGp, ai, q), 1q, a2, §2), -+, t@n-2, @1, Gn-1),
tgn-1, an, DG € Q}

where p, g€ Q and ay, -+, @, € X. When T is applied
to M as above, M is called a T-generalized state ma-
chine.

Hereafter a generalized state machine will always
be written as a T-generalized state machine because a
generalized state machine always induces a T-gener-

alized state machine as in Definition 2.4.

Proposition 2.5. Let M =(Q, X, 1) be a T-gener-

alized state machine. Then
tH(p, %y, @= VAT (P, x,7), e+, 3, P)ir€Q}
forall p, g€ Q and x, ye X .

Proof. Let p, ¢g€Q. Letx=a,-- apand y=b; - b,
with @, -+, @, b1, -, b€ X. Then

VATGHp, x,7), 17 (r, 3, @) Ir €0}
=V{TGHp, @i+ @s, 1), t(r, by b, ) lr € Q}
= V{T(V(T((p, a1, 41, -+, 1(@n-1, @n, )1, -+, Gn-1 €0},
=V{TG(r, b1, gw), », U@n+m-1, Om, D Gny ) Gntm

€Ql}lre Q! by Definition 2.4
=V{T@(p, ai, q1), -+, U@n-1, @n, 7), t(7, by, ga), -+,

WGn +m-1, bm, N1, =, Gu+m-1, 7EQ}

by the V-distributivity of T

=t*(p, a1+ a@n by -+ by, ¢) by Definition 2.4
=tH(p, x3, Q).

. Decomposition of T-generalized state
machines

Definition 3.1. Let M =(Q, X, 1) be a T-generalized
state machine. Let p, g€ Q. p is called an immediate
successor of ¢ if there exists 2 € X such that (g, @, p)
>0. p is called a successor of g if there exists x&€ X
such that t%(g, x, p)>0.
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Proposition 3.2. Let M =(Q, X, 1) be a T-general-
ized state machine. Let p, g, r €Q. Then

(1) g is a successor of g,

(2)if p is a successor of ¢ and 7 is a successor of p,

then 7 is a successor of g.

Proof. (1)Since t+(g, A, g)=1>0, g is a successor
of q.

(?)Let x, ye X+ so that t7(g, x, #)>0 and t+(p,
¥, ¥)>> 0. Then by Propostion 2.5 we have

(g, xy, )= V{T(* (g, x, 9), t*(s, y, ))|Is€Q}
2T(* (g, x, p), t¥(p, 3, 7))
>0.

So we have (2).

When M=(Q, X, 1) be a T-generalized state ma-
chine, we denote Si(g) the set of all successors of g,
where g€ Q.

Definition 3.3. Let M =(Q, X, ) be a T-generalized
state machine. Let RC Q. The set of all successors of
R, denoted by Si(R), in Q is defined to be the set

Su(R) = U{Su(@) g€ R}.

We will write S(g) and S(R) for Sy{g) and Su(R),
respectively.

Theorem 3.4. Let M =(Q, X, 1) be a T-generalized
state machine. Let 4, BC Q. Then

(1)if AC B, then S(4)C S(B),

) ACS(4),

(3)5(S(4)) = S(4),

(4)S(4U B)=S(4) US(B),

(5)S(4 N B)S(A) N S(B).

Proof. The proofs of (1), (2), (4) and (5) are straight-
forward.

(3) Clearly S(4) CS(S(A)). Let g€ S(p) for some p
€ S(A). Since p€ S(4), p€ S{r) for some rE 4. So ¢
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€ S(») by Proposition 3.2(2). Thus g€ S(4) because »
€ A. Hence S(S(4))C S(A).

Definition 3.5. Let M =(Q, X, 1) be a T-generalized
state machine. Let RC Q. Let v be a fuzzy subset of
RXXXR and let N=(R, X, v). The T-generalized
state machine N is called a submachine of M if

Dzl rxxxr=v,

(2)S(RCR.

For the convenience sake, we assume that ¢ = (¢, X,
v) is a submachine of a T-generalized state machine
M. A submachine N=(R, X, v) of M=(Q, X, 1) is
called proper if R#Q and R#4. Clearly, if K is a
submachine of N and N is a submachine of M, then
K is a submachine of M. Note that the number of all

submachines of M is finite because Q is finite.

Definition 3.6. Let M =(Q, X, 1) be a T-generalized
state machine. Let RCQ and {N;=(Q;, X, t;))[7€A}
be the collection of all submachines of M whose state
set contains R. Define (R) =,QA {N;lieA }=(ig Qi,
X, ANiea ti). Then (R) is called the submachine gen-
erated by R.

In Definition 3.6, (R) is clearly the smallest subma-

chine of M whose state set contains R. The union EJA

Ni of a collection { N;=(Q;, X, 1:)|1€A} of subma-

chines of M is (g‘ Qi, X, v) where v=1|(y RXXX U Q)
1 i€A €A

The union of submachines of M is clearly a subma-
chine of M.

Definition 3.7. Let M =(Q, X, 1) be a T-generalized
state machine. Let P be a submachine of M. Then P
is called a primary submachine of M if

(1) There exists g€ Q such that P= (q);

(2)For all se Q if PC (s}, then P=(s).

Lemma 3.8. Let M=(Q, X, 1) be a T-generalized
state machine. Let RCQ. Then (S(R), X, 7|sxxxsw)
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is a submachine of M.
Proof. It is clear.

Lemma 3.9. Let M=(Q, X, 1) be a T-generalized state
machine. Let RCQ. Then {R)=(S(R), X, tsmxxxsw)-

Proof. By Definition 3.6 (R} =(‘QA 0i, X, Niea 1),

where {N;|1Z€EA } is the collection of all submachines
of M whose state set contains R and N;=(Qi, X, 1),
1€A . It suffices to show that S(R)= DA Q;. Since (S

(R), X, tlswxxxsw) is a submachine of M such that
RCS(R) by Lemma 3.8, QA 0:CS(R). Let p€ S(R).

Then there exist #€ R and x€ X such that t¥(», x,
P>0. Now 7€ ﬂA Q. Since (R) is a submachine of
1€

M, pe S( QA Q,~)c_gA Q;:. Thus S(R)Cig Q;. Hence

S(R)= ,QA Oi.

Theorem 3.10. Let M=(Q, X, 1) be a T-generalized
state machine. Let P={P;, P;, -*-, P,} be the set of

all distinct primary submachines of M. Then

MOMmM=U p;,
izl

@QM# U P;forany jE€ {1, 2, -, n}.
i=1

itj

Proof. (1) Let g€ Q. Then by Lemma 3.8 and Lem-
ma 3.9 (¢)=(5(), X, 1|s@xxxs@) is a submachine of
M. Thus either {(g) € P or there exists p€ Q\S(g) such
that {g)€(p). Since Q is finite, either {(g) EP or
there exists an integer A(1<k<#) such that (g)€

n

{pr)EP. Thus g€ U S(p:) where P;={p;). Hence M
f=1

=U P
i=1

(Q)Let N= 0 P;and let Pi=(py). If p;= U S(p,
o o
then p; € S(p;) for some i # j. Hence P;={p;) CP,. This
is a contradiction because P;# P;. Hence M # N.
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Let M =(Q, X, t) be a T-generalized state machine.
M is called singly generated if there exists g€ Q such
that M = {{g}).

Corollary 3.11. Let M=(Q, X, 1) be a T-generalized
state machine. Then every singly generated submach-
ine of M #¢ is a submachine of a primary submachine
of M.

”
Proof. By Theorem 3.10 M= U P; where P; is a pri-

i=]

mary submachine of M. Moreover @ = U S(p:) where
i=1

Pi=(p, 1=1, 2, -, n. Let 4 be a singly generated
submachine of M. Then A= (a), a€ S(p:) for some 7.

Hence A4 is a submachine of P;.

Definition 3.12. A T-generalized state machine M=
(0, X, 1) is said to be T-generalized retrievable if it
satisfies the following; for p, g€ Q if there exists ye X+
such that t*(g, ¥, p)> 0, then there exists x€ X such
that t*(p, x, ¢)>0;o0r equivalently, g€ S(p) if and
only if p& S(g) where p, g€ Q.

Definition 3.13. A nonempty submachine N=(R, X,
v) of a T-generalized state machine M=(Q, X, 1) is
said to be T-generalized separated if S(Q\R) =Q\R.

Proposition 3.14. Let N=(R, X, v) be a nonempty
submachine of a 7T-generalized state machine M=(Q,
X, 1). Then N is T-generalized separated if and only if
S(O\R) = O\R.

Proof. Suppose N is T-generalized separated. Let g
€S(Q\R). Then g#R. Thus g€ Q\R. So S(Q\R) =
O\R. Hence S(@\R)N R=4. Conversely, suppose that
S(Q\R)=Q\R. Then S(Q\R)NR=4. So N is T-gen-

eralized separated.

Definition 3.15. A T-generalized state machine M=
(Q, X, 1) is said to be T-generalized connected if M

has no T-generalized separated proper submachines.
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Definition 3.16. A T-generalized state machine M =
(Q, X, 1) is called strongly T-generalized connected if
pES(g) for all p, g€Q.

Proposition 3.17. Let M =(Q, X, 1) be a T-gener-
alized state machine. Then M is strongly T-generalized

connected if and only if M has no proper submachines.

Proof. Suppose M is strongly T-generalized connec-
ted. Let N=(R, X, v) be a submachine of M such that
R#¢. Then there exists g€ R. Let pEQ. Since M is
strongly T-generalized connected, p€ S(g). Hence p€
S(g)CS(R)CR because N is a submachine of M. Thus
R=Q and so M=N. Conversely, suppose M has no pro-
per submachines. Let p, g€ Q and let N=(5(g), X, v)
where v=1|s@xxxs@. Then N is a submachine of M
and S(g) #¢. Hence S(g)=Q. Thus p& S(g). Hence M

is strongly T-generalized connected.

Theorem 3.18. Let M=(Q, X, 1) be a T-generalized
state machine. Then the following are equivalent:

(1) M is T-generalized retrievable.

(2) M is the union of strongly T-generalized connec-

ted submachines of M.

Proof. The proof is similar to the proof of Theorem
4.8 [3].

Theorem 3.19. Let M=(Q, X, 1) be a T-generalized
state machine. Then the following are equivalent:

(1) M is T-generalized retrievable.

(2)Every primary submachine of M is strongly

T-generalized connected.

Proof. (1)=(2):Let P be a primary submachine of
M. Then P={(p) for some pEQ. Let », {ES(p).
Then there exist x, y€ X such that t¥(p, x, »)>0
and 1¥(p, ¥, 1)>0. Since M is T-generalized retriev-
able, there exist z, v€ X such that t*(», », p)>0
and t1(¢, v, p)>0. Thus by Proposition 2.5 (¢, vx,
r=V{T(z*{¢, v, 5), t¥(s, x, r))|s€Q}>0. Hence »
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€S(), i.e., Pis strongly T-generalized connected.
(2)=(1):From Theorem 3.10 M= P; where P;
i=1
are primary submachines of M. Since P; are strongly
T-generalized connected, M is the union of strongly
T-generalized connected submachines of M. Hence by

Theorem 3.18 M is T-generalized retrievable.

Lemma 3.20. Let M=(Q, X, 1) be a T-generalized
state machine. Then M has a strongly T-generalized

connected submachine.

Proof. We prove the result by induction on |Q| =
#. If =1, then the result is obvious. Suppose the re-
sult is true for all T-generalized state machines N=
(R, X, v) such that [R|<n. Let g€Q. Then M’'=(S
@), X, tlswxxxs@) is a submachine of M by Lemma
3.8. If M’ is strongly T-generalized connected, the re-
sult follows. Suppose that M~ is not strongly T-gener-
alized connected. Then there exists p€ S(g) such that
q & S(p) and hence S(H)CS(g). Now |S(p)| <#. Hence
by induction hypothesis the 7-generalized state ma-
chine (S(p), X, tlsgmxxxse) has a strongly T-gener-

alized connected submachine.

Theorem 3.21. Let M=(Q, X, t) be a T-generalized
state machine. Then the following are equivalent:

(1) M is T-generalized retrievable.

(2) Every singly generated submachine of M is pri-
mary.

(3)Every nonempty T-generalized connected sub-

machine of M is primary.

Proof. (1)=(2):Let N=(g) be a singly generated sub-

machine of M. From Theorem 3.10 M = U P; where
i=1

the P; are primary submachines of M. By Theorem 3.
19, the P; are strongly T-generalized connected. Then
{gYC P; for some i. By Proposition 3.17 (g)=2P;.
Thus N is primary.

(2)=(1):Since every singly generated submachine
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of M is primary, every singly generated submachine
of M is strongly T-generalized connected. Thus every
primary submachine of M is strongly T-generalized
connected. Hence by Lemma 3.20 M is T-generalized
retrievable.

(2= (3):Let N=(R, X, v) be a nonempty T-gener-
alized connected submachine of M. Let g€ Q. Sup-
pose S(g) # R. Since N is T-generalized connected, S
(R\S(@)NS(g) #4. Let € S(R\S(g)N S(g). Then r€
S(@®) for some € R\S(g) and € S(g). Now (r)C(¢)
and (r)C{g). Since (r) is primary, {¢) ={r)=(q).
Thus ¢ € S(q) which is a contradiction. Hence N={q)
and so N is primary.

(3)=>(2):Let N=¢(s) be a singly generated subma-
chine. By Lemma 3.20 N has a strongly T-generalized
connected submachine B= {7}, say. Then B is T-gener-
alized connected and hence primary. Thus {r) =(s) =

N. Hence N is primary.

Lemma 3.22. Let M=(Q, X, 7) be a T-generalized
state machine and let N=(R, X, v) be a T-generalized
separated submachine of M. Then every primary

submachine of N is also a primary submachine of M.

Proof. Let {¢) be a primary submachine of N. Sup-
pose {¢) is not a primary submachine of M. Then
there exists p€ Q\S(qg) such that (g) C{p). Clearly p
€ R. Thus pEQ\R. Since g€ S(p), g€ S(Q\R). Thus
g€ S(O\R)NR. This is a contradiction because N is
T-generalized separated. Hence (g) is a primary sub-

machine of M.

Theorem 3.23. Let M=(Q, X, t) be a T-generalized
state machine and let N;=(Ri, X, w), i=1, 2, -, »
be the primary submachines of M. Then a proper
submachine N=(R, X, v) of M is T-generalized
separated if and only if for some JC{1, 2, -, n}, J
#¢, O\R= ‘_gl R;.

Proof. Suppose N=(R, X, v) be a proper T-gener-
alized separated submachine of M. Then S(Q\R)=
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Q\R. Since N is proper, (Q\R) is nonempty. Thus
{Q\R) is the union of all its primary submachines by
Theorem 3.10. Since (Q\R) is T-generalized separ-
ated, by Lemma 3.22 every primary submachine of
{Q\R) is a primary submachine of M. Thus S(Q\R)
=i§JI R; for some JC {1, 2, -+, n}, J#¢. Since Q\R

=S(Q\R) by Proposition 3.14, Q\R= -LEJ, Ri. Conver-
sely, lel N=(R, X, v} be a proper submachine of M
such that Q\R = 'EJJ R; for some JC{1, 2, -+, n}, J#
#. Since Q\R=S(Q\R), Q\R= LEJJ R;. Since N; is a sub-
machine of M, S(O\R)=S(U R)=U SR)=U R;=
ieJ e [X=32
O\R by Theorem 3.4. Hence N is T-generalized se-
parated.

Corollary 3.24. Let M=(Q, X, 1) be a T-generalized
state machine. Then M is T-generalized connected if
and only if M has no proper submachine N=(R, X,
v) such that Q\R is the union of the sets of states of

all primary submachines of M.
Proof. It is straightforward.
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