Quotient Fuzzy Normed Linear Spaces

Gil Seob Rhie*

※이 논문은 1995년 한남대학교 학술 연구 조성비 지원에 의하여 연구 되었음.

ABSTRACT

The main goal of this paper is to investigate some properties in close connection with the quotient fuzzy norm ρ_q induced by a fuzzy semi-norm ρ on a linear space X and the quotient map $q: X \to X/W$, where W is a subspace of X.

I. Introduction

Since Katsaras and Liu [2] have introduced the notions of fuzzy linear spaces and fuzzy topological linear spaces, the theory of fuzzy topological linear spaces was developed by [3, 5, 7, 8, 9] and so on. In his paper [4], Katsaras defined the fuzzy norm on a linear space and studied its property. Krishna and Sarma [6] introduced the notions of seperation axiom for fuzzy semi-norm and the quotient fuzzy semi-norms and investigated their properties.

Let X be a linear space and W a subspace of X. Let ρ be a semi-norm on X. Krishna and Sarma [6] studied the properties of the quotient fuzzy norm ρ_q , but they restricted the case that the dimension of W is either 1 or equal to that of X.

Our main goal of this paper is to prove some properties of quotient fuzzy norms of fuzzy semi-norms defined on original normed linear spaces because the theory of fuzzy norms is in close connection with the theory of original norms on linear spaces.

II. Preliminaries

Throughout this paper X is a linear space over the field $K(\mathbf{R} \text{ or } \mathbf{C})$. Fuzzy subsets of X are denoted by Greek letters in general. The set of all fuzzy subsets of X are denoted by I^X . By a fuzzy point μ we mean a fuzzy subset $\mu: X \to [0, 1]$ such that

$$\mu(z) = \begin{cases} \alpha, & \text{if } z = x \\ 0, & \text{otherwise.} \end{cases}$$

We usually denote the fuzzy point with support x and value α by (x, α) .

Definition 2.1[2]. For any μ , $\nu \in I^X$, $\mu + \nu \in I^X$ is defined by $(\mu + \nu)(x) = \sup{\{\mu(u) \land \nu(v), u + v = x\}}$. And for a $\mu \in I^X$ and $t \in K$, $t \neq 0$, $t\mu \in I^X$ is defined by $(t\mu)(x) = \mu(x/t)$,

$$(0 \cdot \mu)(x) = \begin{cases} 0 & \text{if } x \neq 0 \\ \sup_{y \in X} \mu(y) & \text{if } x = 0 \end{cases}$$

Definition 2.2[2]. If X and Y are any two sets and $f: X \rightarrow Y$ is a function, then the fuzzification of f itself,

^{*}Department of Mathematics Hannam University

is defined by

(a)
$$f(\mu)(y) = \begin{cases} \sup_{x \in f^{-1}(y)} & \text{if } f^{-1}(y) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

for all $y \neq Y$ and for all fuzzy subset μ of X.

(b)
$$f^{-1}(\mu)(x) = \mu(f(x))$$
 for all $x \in X$, for all $\mu \in I^Y$.

Let μ_1 , $\mu_2 \in I^X$. If $\mu_1(x) \le \mu_2(x)$ for all $x \in X$, we write $\mu_1(x) \subset \mu_2$.

Definition 2.3[2]. $\mu \in I^X$ is said to be:

- (a) convex if $t\mu + (1-t)\mu \subset \mu$ for each $t \in [0, 1]$.
- (b) balanced if $t\mu \subset \mu$ for each $t \in \mathbb{K}$ with $|t| \le 1$.
- (c) absorbing if $\sup_{t>0} t\mu(x) = 1$ for all $x \in X$.

Definition 2.4[5]. Let (X, τ) , (Y, ψ) be two fuzzy topological spaces. A function $f:(X, \tau) \rightarrow (Y, \psi)$ is said to be fuzzy continuous at the fuzzy point $v = (x, \alpha)$ if and only if for every neighbourhood μ of $f(v)(=(f(x), \alpha))$, $f^{-1}(\mu)$ is a neighbourhood of v. We say that f is continuous if and only if f is continuous at (x, α) for each $x \in X$ and for each $\alpha \in (0, 1]$.

Definition 2.5[4]. A fuzzy semi-norm ρ on X is a fuzzy subset of X which satisfies the following three conditions.

- (a) ρ is convex,
- (b) ρ is balanced,
- (c) ρ is absorbing,

If in addition a fuzzy semi-norm ρ satisfies the condition

(d)
$$\inf_{t>0} t\rho(x) = \text{ for } x \neq 0 \text{ in } X,$$

 ρ is called a fuzzy norm.

Definition 2.6[6]. Let (X, τ) be a topological space and

$$\omega(\tau) = \{ f \mid f : (X, \tau) \rightarrow [0, 1] \text{ is lower semi-continuous} \}.$$

Then $\omega(\tau)$ is a fuzzy topology on X. This topplogy

is called the fuzzy topology generated by τ on X.

Definition 2.7[3]. A fuzzy topology on a vector space X is said to be a fuzzy vector topology if vector addition, and scalar multiplication are continuous from $X \times X$ and $K \times X$, respectively, to X with corresponding product fuzzy topologies and the fuzzy topology generated by the usual topology on K. A vector space with a fuzzy vector topology is called a fuzzy topological vector space.

Theorem 2.8[4]. If ρ is a fuzzy semi-norm on X, then the family

$$\mathbf{B} = \mathbf{B}_{\rho} = \{\theta \wedge t\rho \mid 0 < \theta \le 1, \ t > 0\}$$

is a base at zero for a fuzzy vector topology τ_{ρ} .

Definition 2.9[5]. If ρ is a fuzzy semi-norm on X and $\varepsilon \in (0, 1)$, then the function

$$P_{\varepsilon}: X \to \mathbb{R}_+$$
 defined by $P_{\varepsilon} = \inf\{t > 0 \mid t_{\rho}(x) > \varepsilon\}$,

is a semi-norm on X.

Theorem 2.10[5]. A fuzzy semi-norm ρ on a vector space X is a fuzzy norm on X if and only if P_{ε} is a norm on X for each $\varepsilon \in (0, 1)$.

II. Main results

In this section, we prove some properties of the fuzzy semi-norm induced by a fuzzy semi-norm defined on a normed linear space X and the quotient map $q: X \to X/W$, where W is a subspace of X.

Definition 3.1[6]. Let X be a linear space over the field K(R or C) and W be a subspace of X. If ρ is a fuzzy semi-norm, the quotient fuzzy semi-norm ρ_q is defined by

 $\rho_q(x+W) = \sup \{ \rho(x+y) | y \in W \}, \quad x+W \in X/W.$

Firstly we will characterize ρ_q as the image of ρ under q.

Theorem 3.2. The fuzzy semi-norm ρ_q described in Definition 3.1 is the image of ρ under q. That is $\rho_q(x + W) = q(\rho)(x + W)$ for all $x + W \in X/W$.

Proof. For every
$$x + W \in X/W$$
,
 $\rho_q = \sup \{ \rho(x + y) | y \in W \}$
 $= \sup \{ \rho(z) | z - x \in W \}$
 $= \sup \{ \rho(z) | z \in x + W \}$
 $= \sup \{ \rho(z) | z + W = x + W \}$
 $= \sup \{ \rho(z) | z \in q^{-1}(x + W) \}$
 $= q(\rho)(x + W)$

This completes the proof.

Secondly we are to prove that the quotient map is fuzzy continuous.

Theorem 3.3. Let X be a linear space over the field K (\mathbb{R} or \mathbb{C}) and W a subspace of X. If ρ is a fuzzy seminorm on X, then the function $q:(X, \rho) \to (X/W, \rho_q)$ is fuzzy continuous at every fuzzy point (x, α) where $x \in X$, $\alpha \in (0, 1]$.

In order to prove the theorem, we need the following lemma relative to the original norm X.

Lemma. Let $\varepsilon \in (0, 1)$, then $P_{\varepsilon}(x) \ge P_{\varepsilon}^{q}(x + W)$ for all $x \in X$, where P_{ε} , P_{ε}^{q} are induced by ρ , ρ_{q} respectively as in Definition 2.9.

Proof. Since for t > 0,

$$t\rho(x) > \varepsilon$$
 implies $t\rho_q(x + W) = \sup\{t\rho(x + y) \mid y \in W\}$
 $\geq t\rho(x) > \varepsilon$,

we get

$$\{t>0 \mid t\rho(x)>\varepsilon\}\subset \{t>0 \mid t\rho_q(x+W)>\varepsilon\}.$$

Therefore $P_{\varepsilon}(x) = \inf\{t > 0 \mid t\rho(x) > \varepsilon\} \ge \inf\{t > 0 \mid t\rho_q$ $(x + W) > \varepsilon\} = P_{\varepsilon}^q(x + W).$

This completes the proof of lemma.

Proof of Theorem 3.3. For our goal, it is sufficient to prove that for each t > 0, there exists t' > 0 such that for any $y \in X$ and for each $\varepsilon < \alpha$, $P_{\varepsilon}(y-x) < t'$ implies $P_{\varepsilon}^{q}(q(y)-q(x)) < t$ by Theorem 3.5 of [5]. Since $P_{\varepsilon}^{q}((x-y)+W) \le P_{\varepsilon}(x-y)$, by the above lemma, putting t=t',

$$P_{\varepsilon}(y-x) < t'$$
 implies $P_{\varepsilon}^{q}(q(y)-q(x)) = P_{\varepsilon}^{q}((x-y)+W)$
 $\leq P_{\varepsilon}(x-y) < t$.

This completes the proof of Theorem 3.3.

Theorem 3.4[1]. Let X be a normed linear space, let W be a closed subspace of X, and let $q: X \rightarrow X/W$ be the quotient map. The function $\|\cdot\|: X/W \rightarrow [0, \infty)$ defined by $\|x + W\| = \inf\{\|x + y\| \mid y \in W\}$ has the following properties:

- (a) $\|\cdot\|$ is a norm on X/W.
- (b) $||q(x)|| \le ||x||$ for all $x \in X$, that is, q is continuous.
- (c) If X is a Banach space, then so is X/W.

In Theorem 3.3, we proved a fuzzy version of the property (b). Now we will investigate some fuzzifications which are related to the remainings of the above theorem.

Theorem 3.5. Let X be a normed linear space and W a closed subspace of X. If ρ is a fuzzy semi-norm with bounded support, then the fuzzy semi-norm ρ_q on X/W is a fuzzy norm.

Proof. Let $x + W \in X/W$ and $x \in W$, that is $x + W \cap W = \emptyset$. Since ρ has the bounded support, there exists an M > 1 such that the support of ρ is contained in MB where B is the closed unit ball of X. Let $\alpha = \inf\{\|x + y\| \mid y \in W\}$. Then $\alpha > 0$ because W is a closed sub-

space of X and
$$x \notin W$$
. If we set $2s = \frac{\alpha}{M}$, then $supp(s\rho)$

 $\subset \frac{\alpha}{2M} MB = \frac{\alpha}{2} B \text{ and } ||x+y|| > \frac{\alpha}{2} \text{ for all } y \in W.$

Whence $s \rho_d(x + W) = \sup \{ s \rho(x + y) \mid y \in W \} = 0$ because

$$\|(x+y)/s\| = \frac{2M}{\alpha} \|x+y\| > \frac{2M}{\alpha} \frac{\alpha}{2} = M \text{ for all } y \in$$

W, and so $\inf_{t>0} t\rho_q(x+W)=0$. Therefore ρ_q is a fuzzy norm on X/W. This completes the proof.

The above theorem shows that the condition of the boundedness of the support of a fuzzy semi-norm is essential ρ_q to be a fuzzy norm.

Theorem 3.6. Let X be a normed linear space and W a closed subspace. If ρ is a semi-norm with the bounded support on X, then ρ_q is a fuzzy norm on X/W with the bounded support.

Proof. Since ρ_q is a fuzzy norm by the preceding theorem, we will prove that ρ_q has the bounded support. Let x+W be an element of the support of ρ_q . Since $\rho_q(x+W)>0$ and $\rho_q(x+W)=\{\rho(z)|z\in x+W\}$, there exists z in X such that $\rho(z)>0$ and x+W=z+W. Since ρ has the bounded support, there exists a positive real number M such that $||x|| \le W$ for all x in the support of ρ . For this M, $||x+W|| = ||z+W|| \le ||z|| < M$. Whence ρ_q has the bounded suport. This completes the proof.

Definition 3.7[8]. Let $\alpha \in (0, 1)$. A sequence of fuzzy points $\{\mu_n = (x_n, \alpha_n)\}$ is said to be a fuzzy α -Cauchy sequence in a fuzzy normed linear space (X, ρ) if for each zero neighbourhood N with $N(0) > \alpha$, there exists a positive integer M such that $n, m \ge M$ implies $\mu_n - \mu_m = (x_n - x_m, \alpha_n \wedge \alpha_m) \subset N$. A fuzzy normed linear space (X, ρ) is said to be fuzzy α -complete if every fuzzy α -Cauchy sequence $\{\mu_n\}$ converges to a fuzzy point $\mu = (x, \alpha)$. (X, ρ) is said to be fuzzy complete if it is fuzzy α -complete for every $\alpha \in (0, 1)$.

By Theorem 3.4, Definition 3.7 and Theorem 3.7 of [8], we get the following theorem.

Theorem 3.8. Let ρ be a semi-norm on a normed lin-

ear space X and W a closed subspace of X. If ρ has the bounded support and ρ_q is lower semi-continuous, then $(X/W, \rho_q)$ is a fuzzy complete fuzzy normed linear space.

Definition 3.9[6]. A fuzzy topological space (X, τ) is said to be separated (or T_2) if and only if for each pair (x, α) , (y, β) , $x \neq y$ of fuzzy points in X, there exist open fuzzy sets μ and ν in X such that $\mu(x) \geq \alpha$, $\nu(y) \geq \beta$ and $(\mu \wedge \nu)(z) = 0$ for every $z \in X$.

With Theorem 3.6 and Theorem 3.2 of [6], and Theorem 3.9 of [6], we obtain the following two corollaries.

Corollary 3.10. Let ρ be a semi-norm on a normed linear space X and W a closed subspace of X. If ρ has the bounded support, then ρ_q is a T_2 -semi-norm on X/W.

Corollary 3.11. Under the same hypothesis in Corollary 3.10., the function $P^q_o: X/W \to [0, \infty)$ defined by $P^q_o(x+W) = \inf\{t > 0 \mid t\rho_q(x+W) > 0\}$ is a norm.

References

- J. B. Conway, A course in functional analysis, Springer-Verlag INC, New York, 1985.
- A. K. Katsaras and D. B. Liu, Fuzzy vector spaces and fuzzy topological vector spaces, J. Math. Anal. Appl. 58 (1977), 135-146.
- A. K. Katsaras, Fuzzy topological vector spaces I, Fuzzy Sets and Systems 6 (1981), 85-95.
- 4. A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems 12 (1984), 143-154.
- S. V. Krishna and K. K. M. Sarma, Fuzzy continuity of linear maps on vector spaces, Fuzzy Sets and Systems 45 (1992), 341-354.
- S. V. Krishna and K. K. M. Sarma, Seperation of fuzzy normed linear spaces, Fuzzy Sets and Systems 63 (1994), 207-217.
- 7. R. Lowen, Fuzzy topological spaces and fuzzy com-

- pactness, J. Math. Anal. Appl. 56 (1976), 621-633.
- 8. Gil Seob Rhie and Dong Sik Kim, On the completeness and fuzzy completeness, Proceedings of KFMS Spring Conference'95, 5 (1995), 114-119.
- 9. Y. Terao, On a continuous base of fuzzy neighbourhoods of the orign on fuzzy locally convex spaces, Mathematica Japonica 39(1) (1994), 53-57.

이 길 섭(Gil Seob Rhie) 정희원 1980년 2월: 한남대학교 수학과 (이학사)

1982년 2월:고려대학교 대학원 수 학과 (이학석사)

1988년 2월:고려대학교 대학원 수 학과 (이학박사)

1996년 6월~현재:한남대학교 수

학과 교수