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ABSTRACT

The main goal of this paper is to investigate some properties in close connection with the quotient fuzzy norm p,

induced by a fuzzy semi-norm p on a linear space X and the quotient map ¢:X— X/W, where W is a subspace of X.

I. Introduction

Since Katsaras and I;iu [2] have introduced the not-
ions of fuzzy linear spaces and fuzzy topological lin-
ear spaces, the theory of fuzzy topological linear
spaces was developed by [3, 5, 7, 8, 9] and so on. In
his paper [4], Katsaras defined the fuzzy norm on a
linear space and studied its property. Krishna and Sar-
ma [6] introduced the notions of seperation axiom for
fuzzy semi-norm and the quotient fuzzy semi-norms
and investigated their properties.

Let X be a linear space and W a subspace of X. Let
p be a semi-norm on X. Krishna and Sarma [6] stud-
ied the properties of the quotient fuzzy norm p,, but
they restricted the case that the dimension of W is
either | or equal to that of X.

Our main goal of this paper is to prove some prop-
erties of quotient fuzzy norms of fuzzy semi-norms
defined on original normed linear spaces because the
theory of fuzzy norms is in close connection with the

theory of original norms on linear spaces.
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II. Preliminaries

Throughout this paper X is a linear space over the
field K(R or C). Fuzzy subsets of X are denoted by
Greek letters in general. The set of all fuzzy subsets
of X are denoted by F*. By a fuzzy point y we mean a
fuzzy subset u: X — [0, 1] such that

@ a, if z2=x
z2)=
# 0, otherwise.

We usually denote the fuzzy point with support x and
value a by (x, a).

Definition 2.1[2). For any pu, v€IX, p+veI¥ is de-
fined by (u +) (¥) =sup {u@) A fv), ¥ +v=x}. And
for a u€I¥ and €K, ¢t #£0, tu€I¥ is defined by (¢p)
() = ulx/t),

0 if x#0
©- )= )
supyex p(») if x=0

Definition 2.2[2]. If X and Y are any two sets and f:
X—Y is a function, then the fuzzification of f itself,
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is defined by

if /7' #¢

otherwise

SUpxet(y)

@f& =

for all y#Y and for all fuzzy subset u of X.
®) f (W (@) =p(f(x)) for all x€ X, for all u€ I*.

Let ui, €I~ If w(x) < px) for all x€ X, we
write u(x)C .

Definition 2.3[2]. p€ I* is said to be:
(a)convex if fu +(1 —#) uC p for each t €0, 1].
(b) balanced if £uC p for each €K with |£] <1.
(c)absorbing if sup:>o fu(x) =1 for all xE X.

Definition 2.4[5]. Let (X, 1), (¥, ¢) be two fuzzy topo-
logical spaces. A function f:(X, t)—> (Y, ) is said to
be fuzzy continuous at the fuzzy point v=(x, a) if
and only if for every neighbourhood p of f(w)(=(f(»),
), f~'(1) is a neighbourhood of ». We say that f is
continuous if and only if f is continuous at (x, a) for
each ¥ € X and for each «€ (0, 1].

Definition 2.5[4]. A fuzzy semi-norm p on X is a fuzzy
subset of X which satisfies the following three condi-
tions.

(a) p is convex,

(b) p is balanced,

(c) p is absorbing,

If in addition a fuzzy semi-norm p satisfies the con-
dition

(d)inf; >0 2p(x)= for x#0in X,
p is called a fuzzy norm.

Definition 2.6[6]. Let (X, ) be a topological space and
aft)={f1f:(X, ©)—[0, 1] is lower semi-continuous}.

Then «(z) is a fuzzy topology on X. This topplogy
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is called the fuzzy topology generated by 7 on X,

Definition 2.7[3]. A fuzzy topology on a vector space
X is said to be a fuzzy vector topology if vector ad-
dition, and scalar multiplication are continuous from
XXX and KX X, respectively, to X with correspond-
ing product fuzzy topologies and the fuzzy topology
generated by the usual topology on K. A vector space
with a fuzzy vector topology is called a fuzzy topo-

logical vector space.

Theorem 2.8[4]. If p is a fuzzy semi-norm on X, then
the family

B=B,={0A1p|0<0<1, t>0}

is a base at zero for a fuzzy vector topology t,.

Definition 2.95]. If p is a fuzzy semi-norm on X and
£€(0, 1), then the function

Pe:X— Ry defined by Pe=inf{t>0|tp(x)> €},

is a semi-norm on X.

Theorem 2.10[5]. A fuzzy semi-norm p on a vector space
X is a fuzzy norm on X if and only if P is a norm on
X for each e€ (0, 1).

. Main results

In this section, we prove some properties of the

fuzzy semi-norm induced by a fuzzy semi-norm de-

fined on a normed linear space X and the quotient

map ¢:X—> X/W, where W is a subspace of X.

Definition 3.1[6]. Let X be a linear space over the field
K(R or C) and W be a subspace of X. If p is a fuzzy
semi-norm, the quotient fuzzy semi-norm p, is defined
by
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plx +W)=sup{plx +y)lyeW}, x+Wex/w.
Firstly we will characterize p, as the image of p

under g.

Theorem 3.2. The fuzzy semi-norm p, described in
Definition 3.1 is the image of p under ¢. That is p (x
+W)=g(p)(x +W) for all x +W € X/W.

Proof. For every x +W € X/W,
pg=sup{plx +y)|yeW}
=sup{p(@)lz—xeW}
=sup{p(@)|zex+W}
=sup{p@) |z +W=x+W}
=sup{p(@)|z€q(x +W)}
=q(p)(x +W)
This completes the proof.
Secondly we are to prove that the quotient map is

fuzzy continuous.

Theorem 3.3. Let X be a linear space over the field K
(R or C) and W a subspace of X. If p is a fuzzy semi-
norm on X, then the function q:(X, p)— (X/W, p,) is
fuzzy continuous at every fuzzy point (x, &) where x
€X, ac(0, 1].

In order to prove the theorem, we need the follow-

ing lemma relative to the original norm X.

Lemma. Let e€ (0, 1), then P(x) = Pi(x +W) for all
x € X, where P, P{ are induced by p, p, respectively
as in Definition 2.9.

Proof. Since for £ >0,

tp(x) > £ implies tp{x +W)=sup{tplx +y) |yEW}
> tp(x) > €,

we get

(> 01tp@) > €} C{t> 0ltpx +W)>¢€).

96

Therefore Pe(x)=inf{t>0[tp(x) > €} = inf{t>0|tp,
x+W)>e}=Pix +W).

This completes the proof of lemma.

Proof of Theorem 3.3. For our goal, it is sufficient
to prove that for each £>>0, there exists "> 0 such
that for any y€ X and for each €< a, Py—x)<¥’
implies PZ(g(y)—q(x)) <t by Theorem 3.5 of [5].
Since P{{((x —y) +W) < P{x —y), by the above lemma,
putting £=¢,

P(y—x)<t’ implies Pi(g(y)—q(x))= P{(x —3) +W)
< Pe(x_y) <t

This completes the proof of Theorem 3.3.

Theorem 3.4[1]. Let X be a normed linear space, let W
be a closed subspace of X, and let ¢: X— X/W be the
quotient map. The function |-|: X/W —[0, ©) de-
fined by llx +Wl =inf{lx +y||yEW} has the fol-
lowing properties:

@) Il-1l is a norm on X/W.

(b) lgill < lx|l for all x € X, that is, ¢ is continuous.

(c)If X is a Banach space, then so is X/W.

In Theorem 3.3, we proved a fuzzy version of the
property (b). Now we will investigate some fuzzificat-
ions which are related to the remainings of the above

theorem.

Theorem 3.5. Let X be a normed linear space and W
a closed subspace of X. If p is a fuzzy semi-norm with
bounded support, then the fuzzy semi-norm p,; on X/
W is a fuzzy norm.

Proof. Let x +W € X/W and x § W, that is x +W N
W =¢. Since p has the bounded support, there exists
an M >1 such that the support of p is contained in
MB where B is the closed unit ball of X. Let a=inf{||x
+yllly€W?}. Then > 0 because W is a closed sub-

space of X and x § W. If we set 2s= ﬁ , then supp(sp)
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a o [ 4
c T MB= 5 Band (lx +yI|> ) for all yew.

Whence spfx +W)=sup{sp(x +y) | yEW } =0 because

16+ 351 =22 1w 491> 2 2 2 pp for all ye
a a 2
W, and so inft>¢ fpg(x +W)=0. Therefore p, is a
fuzzy norm on X/W. This completes the proof.
The above theorem shows that the condition of the
boundedness of the support of a fuzzy semi-norm is

essential p, to be a fuzzy norm.

Theorem 3.6. Let X be a normed linear space and W
a closed subspace. If p is a semi-norm with the bo-
unded support on X, then p, is a fuzzy norm on X/W
with the bounded support.

Proof. Since pg is a fuzzy norm by the preceeding
theorem, we will prove that p, has the bounded sup-
port. Let x +W be an element of the suppoert of p,.
Since p(x +W)>0 and px +W)={p(2)|z€x +W},
there exists z in X such that p(2) >0 and x +W =2z
+W. Since p has the bounded support, there exists a
positive real number M such that |x|| < W for all x
in the support of p. For this M, llx +W| =z +W]|
< llz] < M. Whence p, has the bounded suport. This

completes the proof.

Definition 3.7[8]. Let «€ (0, 1). A sequence of fuzzy po-
ints { un=(xn, @)} is said to be a fuzzy a-Cauchy se-
quence in a fuzzy normed linear space (X, p) if for
each zero neighbourhood N with N(0)> a, there exists
a positive integer M such that », m > M implies yu, —
m=(Xn—%m, anNaw) CN. A fuzzy normed linear
space (X, p) is said to be fuzzy a-complete if every
fuzzy o-Cauchy sequence {u,} converges to a fuzzy
point u=(x, a). (X, p) is said to be fuzzy complete if
it is fuzzy a-complete for every a € (0. 1).

By Theorem 3.4, Definition 3.7 and Theorem 3.7 of

[8], we get the following theorem.

Theorem 3.8. Let p be a semi-norm on a normed lin-
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ear space X and W a closed subspace of X. If p has
the bounded support and p, is lower semi-continuous,
then (X/W, p,) is a fuzzy complete fuzzy normed lin-
ear space.

Definition 3.9[6]. A fuzzy topological space (X, 1) is
said to be separated (or T3) if and only if for each
pair (x, @), (¥, B), x#y of fuzzy points in X, there
exist open fuzzy sets u and v in X such that u(x)>a, v
(=4 and (uAV)(2) =0 for every zE X.

With Theorem 3.6 and Theorem 3.2 of [6], and The-
orem 3.9 of [6], we obtain the following two corol-
laries.

Corollary 3.10. Let p be a semi-norm on a normed
linear space X and W a closed subspace of X. If p has
the bounded support, then p, is a T>-semi-norm on
X/W.

Corollary 3.11. Under the same hypothesis in Cor-
ollary 3.10., the function P%:X/W —[0, ©) defined
by Plx +W)=inf{t > 0|tp,(x +W)> 0} is a norm.

References

1. J. B. Conway, A course in functional analysis, Spr-
inger-Verlag INC, New York, 1985.

2. A. K. Katsaras and D. B. Liu, Fuzzy vector spaces
and fuzzy topological vector spaces, J. Math. Anal.
Appl. 58 (1977), 135-146.

3. A. K. Katsaras, Fuzzy topological vector spaces I,
Fuzzy Sets and Systems 6 (1981), 85-95.

4. A. K. Katsaras, Fuzzy topological vector spaces 11,
Fuzzy Sets and Systems 12 (1984), 143-154.

5. 8. V. Krishna and K. K. M. Sarma, Fuzzy conti-
nuity of linear maps on vector spaces, Fuzzy Sets
and Systems 45 (1992), 341-354.

6. S. V. Krishna and K. K. M. Sarma, Seperation of
fuzzy normed linear spaces, Fuzzy Sets and Sys-
tems 63 (1994), 207-217.

7. R. Lowen, Fuzzy topological spaces and fuzzy com-



P2 A 8 A5 A2 =X 199 Vol. 6, No. 3.

0] & M(Gil Seob Rhie) A3
19803 29 : shd el 8ha =85
. (o] &2
19823 29 : L & 4
Bt} (o] 842D
1988'd 24 :wE|Uista ek 4

pactness, J. Math. Anal. Appl. 56 (1976), 621-633.
8. Gil Seob Rhie and Dong Sik Kim, On the com-

pleteness and fuzzy completeness, Proceedings of

KFMS Spring Conference’95, 5 (1995), 114-119.

9. Y. Terao, On a continuous base of fuzzy neigh-

bourhoods of the orign on fuzzy locally convex St} (o] gHekah
spaces, Mathematica Japonica 39(1) (1994), 53-57. 19963 64~ A T
g3t 24

98



