Fuzzy Weakly Implicative Ideals of Bck-Algebras

Young-Hee Kim*, Youn-Mi Nam Koong**, Eun-Jung Oh***

ABSTRACT

In this paper, we investigated the relation between the ideals of BCK-algebras and fuzzy ideals. We defined the weakly implicative ideals of BCK-algebras and obtained some properties. We proved some results for the fuzzy weakly implicative ideals of bounded commutative BCK-algebras. We also investigated that the weakly implicative ideals are similar to the fuzzy positive implicative ideals.

I. INTRODUCTION

In [11] Ougen extended the concept of fuzzy sets to BCK-algebras in general. In [3] Hoo has seen some general properties for fuzzy ideals of BCI and MV-algebras (or bounded commutative BCK-algebras). We shall adopt the definition and teminology of [2] and [3].

We review some fuzzy logic concepts. We shall write $a \wedge b$ for $min\{a, b\}$ and $a \vee b$ for $max\{a, b\}$ for any two real numbers a, b and denote the closed unit interval by [0, 1]. A fuzzy subset of a BCI-algebra X is a funtion $\mu: X \rightarrow [0, 1]$.

Definition 1.1. Let $(X, \cdot, 0)$ be a BCK-algebra. A fuzzy set μ in X is called a *fuzzy ideal* of X if it satisfies the following conditions:

$$(1) \mu(0) \ge \mu(x) \text{ for all } x \in X,$$

$$(2) \mu(x) \ge \mu(x \cdot y) \land \mu(y) \text{ for all } x \in X.$$

Proposition 1.2. [3] Let X be a BCK-algebra and μ a fuzzy ideal in X. Then

(1) $x \le y$ implies $\mu(x) \ge \mu(y)$,

 $(2)\,\mu(x*y)\geq\mu(x*z)\wedge\mu(z*y),$

 $(3) \mu(x \cdot y) = \mu(0) \text{ implies } \mu(x) \ge \mu(y),$

 $(4) \mu(x * y) \wedge \mu(y) = \mu(x) \wedge \mu(y),$

(5) if X is bounded, then $\mu(x) \wedge \mu(1 * x) = \mu(1)$ for all $x \in X$.

(6) if $x \ge y$, then $\mu(x) = \mu(x * y) \land \mu(y)$.

For a given fuzzy set μ and $t \in [0, 1]$, let $\mu_t = \{x \in X | \mu(x) \ge t\}$. This could be an empty set. In fact, μ is a fuzzy ideal if and only if for each $t \in [0, 1]$, μ_t is either empty or an ideal of X.

For a given fuzzy ideal of a BCK-algebra X, $X_{\mu} = \{x \in X | \mu(x) = \mu(0)\}$ is an ideal of X. And if I is an ideal of a BCK-algebra X, then the characteristic function of I, $\chi_I \rightarrow [0, 1]$, is a fuzzy ideal of X, and $I = X_{XI}$. We can check these facts easily.

Definition 1.3. Let X be a commutative BCK-algebra and μ a fuzzy set in X. μ is a fuzzy prime ideal of X if it is non-constant and $\mu(x \wedge y) = \mu(x) \wedge \mu(y)$ for all $x, y \in X$.

^{*}충북대학교 자연대 수학과 교수

^{**}충북대학교 대학원 수학과 박사과정

^{***} 충북대학교 대학원 수학과 석사졸업

Proposition 1.4. [3] If X is commutative then a non-constant

fuzzy subset α of X is a fuzzy prime ideal of X if and only if for each $t \in [0, 1]$, α_t is either empty or a prime ideal of X if it is proper.

Proposition 1.5. Let X be a BCK-algebra and μ be a fuzzy ideal of X.

Then we always have

 $\mu((x*z)*z) \ge \mu((x*y)*z) \land \mu(y*z)$ for all $x, y, z \in X$.

Hence every ideal of X is weakly implicative.

Proof: By (2) Proposition 1.2, we have $\mu((x*z)*z) \ge \mu((x*z)*y) \land \mu(y*z) = \mu((x*y)*z) \land \mu(y*z)$. Suppose that I is an ideal of X and $(x*y)*z \in I$ and $y*z \in I$. Consider the fuzzy ideal X_I of X. Then, $I = X_{X_I}$. Thus $X_I((x*y)*z) = X_I(0) = X_I(y*z)$. This means that $X_I((x*y)*z) = 1 = X_I(y*z)$. Hence $X_I((x*z)*z) \ge X_I((x*y)*z) \land X_I(y*z) = 1$. Therefore $(x*z)*z \in X_{X_I} = I$, proving that I is weakly implicative.

From above Proposition, for the weakly implicativity of ideals of BCK-algebra, we can define followings.

Definition 1.6. Given a BCK-algebra (X, *, 0), a nonempty subset I of X is said to be a weakly implicative ideal of X if it satisfies the followings:

(1) $0 \in I$,

 $(2)(x*y)*z \in I$ and $y*z \in I$ imply $(x*z)*z \in I$, for all $x, y, z \in X$.

Definition 1.7. Lex X be a BCK-algebra. A fuzzy set μ in X is called a *fuzzy weakly implicative ideal* of X if it satisfies the followings:

 $(1)\mu(0) \ge \mu(x)$ for all $x \in X$,

 $(2) \mu((x*z)*z) \ge \mu((x*y)*z) \land \mu(y*z) \text{ for all } x, y, z \in X.$

Definition 1.8. Let X be a BCK-algebra. A fuzzy set μ in X is called a *fuzzy positive implicative ideal* of X if it satisfies the following conditions:

 $(1) \mu(0) \ge \mu(x) \text{ for all } x \in X,$ $(2) \mu(x * z) \ge \mu((x * y) * z) \land \mu(y * z) \text{ for all } x, y, z \in X.$

Proposition 1.9. Let X be a BCK-algebra. Then

- (1) I is a positive implicative ideal of X if and only if χ_I is a fuzzy positive implicative ideal of X,
- (2) if X is commutative, then I is a prime ideal of X if and only if X_1 is a fuzzy prime ideal of X.

Proof: (1) Suppose that I is a positive implicative ideal of X. Then $0 \in I$. So $X_I(0) = 1$. We claim that $X_I(x * z) \ge X_I(x * y) * z$, $\wedge X_I(y * z)$. If (x * y) * z, $y * z \in I$, then $x * z \in I$. Then $X_I(x * z) = X_I((x * y) * z) = X_I(y * z) = 1$. Thus $X_I(x * z) \ge X_I((x * y) * z) \wedge X_I(y * z)$. If $((x * y) * z) \in I$ or $(y * z) \in I$, $X_I((x * y) * z) = 0$ or $X_I(y * z) = 0$. Then $X_I((x * y) * z) \wedge X_I(y * z) = 0$. Thus we always have, for x * z, $X_I(x * z) \ge X_I((x * y) * z) \wedge X_I(y * z)$. Hence X_I is a positive implicative ideal of X. Conversely, suppose the X_I is a positive implicative ideal of X. Since $X_I(0) \ge X_I(x)$, for all $x \in X$, $X_I(0) = 1$. So $0 \in I$. If (x * y) * z, $y * z \in I$, then $X_I((x * y) * z) = X_I(y * z) = 1$. Then $X_I(x * z) = 1$. So $x * z \in I$. Therefore I is a positive implicative ideal of X.

(2) Suppose that I is a prime ideal of X. We already know that X_I is a fuzzy ideal of X. Since I is proper, X_I is non-constant. Let x, $y \in X$. If $x \in I$ or $y \in I$ then $x \land y \in I$ and hence $X_I(x \land y) = 1 = X_I(x) \lor X_I(y)$. If $x \notin I$ and $y \notin I$ then $x \land y \notin I$ and hence $X_I(x \land y) = 0 = X_I(x) \lor X_I(y)$. Hence X_I is a prime ideal of X. Conversely, let X_I be a fuzzy prime ideal of X. Since $I = X_{X_P}$ I is a prime ideal of X.

Theorem 1.10. A nonempty subset I of a BCK-algebra X is a weakly implicative ideal of X if and only if X_I is a fuzzy weakly implicative ideal of X.

Proof: Since I is an ideal of X, $0 \in I$. $\chi_I(0) = 1$. So $\chi_I(0) \geq \chi_I(x)$ for all $x \in X$. It remains to show that $\chi_I((x*z)*z) \geq \chi_I((x*y)*z) \wedge \chi_I(y*z)$. If (x*y)*z, $y*z \in I$, then $\chi_I((x*y)*z) = \chi_I(y*z) = 1$ and (x*z)*z is also in I. Thus $\chi_I((x*z)*z) \geq \chi_I((x*y)*z) \wedge \chi_I(y*z)$. If $(x*y)*z \notin I$ or $y*z \notin I$, then $\chi_I((x*y)*z) \wedge \chi_I((y*z)$ = $0 \leq \chi_I((x*z)*z)$. Hence χ_I is a fuzzy weakly implicative ideal of X. Conversely, for all $x \in X$, $\chi_I(x) = 0$ or 1. Since $\chi_I(0) \geq \chi_I(x)$, $\chi_I(0) = 1$. Thus $0 \in I$. Suppose that (x*y)*z $y*z \in I$. Then $\chi_I((x*y)*z) = \chi_I(y*z) = 1$. $\chi_I((x*z)*z) \geq \chi_I((x*y)*z) \wedge \chi_I(y*z) = 1$. $\chi_I((x*z)*z) \geq \chi_I((x*y)*z) \wedge \chi_I(y*z) = 1$. Hence I is a weakly implicative ideal of X.

II. FUZZY WEAKLY IMPLICATIVE IDEALS OF BOUNDED COMMUTATIVE BCKALGEBRAS

In this section, X will denote a bounded commutative BCK-algebra and μ a general fuzzy ideal of X which may have other properties as specified.

Definition 2.1. The set of nilpotent element of X is

 $N(X) = \{x \in X | x^n = 0 \text{ for some } n \ge 1\}.$

Proposition 2.2. [3] If μ is a fuzzy positive implicative ideal of X, then $\mu(x^n) = \mu(x)$ for all $x \in X$ and $n \ge 1$.

Example 1. For a fuzzy weakly implicative ideal, Proposition 2.2 fails. Let $X = \{0, 1, 2\}$ which binary operation * is given by the table then (X, *, 0) is a bounded commutative BCK-algebra with unit 2. Define a function $\mu: X \rightarrow [0, 1]$ by for $a \ge b \ge c$, $\mu(0) = a$, $\mu(1) = b$, $\mu(2) = c$. Then μ is a fuzzy weakly implicative ideal of X. $\mu(1) = b$ but $\mu(1^2) = \mu(1 * 1) = 1$ $\mu(1 * 1) = \mu(0) = a \ne \mu(1)$.

Remark. For x, y in a bounded comutative BCK-algebra X, define $x \wedge y = y * (y * x) = x * (x * y)$, $\overline{x} = 1 * x$ (denoted by N_x), $\overline{y} = 1 * y$, $x \vee y = (\overline{x} * \overline{y})^- = N(N_x \wedge N_y)$.

Theorem 2.3. If μ is a fuzzy weakly implicative ideal of X and x * (x * y) = x * y for all x, $y \in X$ then $\mu(x^n) = \mu(x)$, for all $x \in X$ and $n \ge 1$.

Proof: This is true for n=1. In case of n=2, we have $\mu(x) = \mu(1*\overline{x}) = \mu((1*\overline{x})*\overline{x}) \geq \mu((1*\overline{x})*\overline{x}) \wedge \mu(\overline{x}*\overline{x})$ $= \mu(x^2)$. But $x^2 \leq x$ and hence $\mu(x^2) \geq \mu(x)$. This means that $\mu(x^2) = \mu(x)$. Suppose that $n \geq 3$ and $\mu(x^{n-1}) = \mu(x)$ Then $\mu(x^{n-1}) = \mu(x^{n-2}*\overline{x}) = \mu(x^{n-2}*\overline{x})*\overline{x}) \geq \mu((x^{n-2}*\overline{x})*\overline{x}) \wedge \mu(\overline{x}*\overline{x}) = \mu(x^n)$. But $x^n \leq x^{n-1}$ and hence $\mu(x^n) = \mu(x^{n-1})$. This proves that $\mu(x^n) = \mu(x^{n-1}) = \mu(x)$.

Corollary 2.4. Let I be a positive (weakly) implicative ideal of X. If $x^n \in I$ for some $n \ge 1$ then $x \in I$. Hence $N(X) \subset I$.

Proof: For a positive (weakly) implicative ideal I, consider the fuzzy positive (weakly) implicative ideal \mathcal{X}_I of X. Note that $X_{\mathcal{X}_I} = \{x \in X | \mathcal{X}_I(0) = \mathcal{X}_I(x)\} = I$. If $x^n \in I$ for some $n \geq 1$ then $\mathcal{X}_I(x^n) = 1$. Since $0 \in I$ and by Theorem 2.3, $\mathcal{X}_I(x^n) = \mathcal{X}_I(x) = 1$. Hence $x \in I$. i.e. $N(X) \subset I$.

Proposition 2.5. If μ is a fuzzy positive implicative ideal of X, then $\mu(x \vee y) = \mu(x + y) = \mu(x) \wedge \mu(y)$ for all x, $y \in X$.

Proof: We have $x, y \le x \lor y \le x + y$. Hence $\mu(x) \land \mu$ $(y) \ge \mu(x \lor y) \ge \mu(x + y)$. Now $(x + y) * x = (x + y)\overline{x}$ $= \overline{x} * (\overline{x} \overline{y}) = \overline{x} * (\overline{x} * y) = \overline{x} \land y$. Hence $\mu((x + y) * x) = \mu$ $(\overline{x} \land y) \ge \mu(\overline{x}) \lor \mu(y)$, since $\overline{x} \land y \le \overline{x}$, y. This means that $\mu(x + y) \ge \mu((x + y) * x) \land \mu(x) \ge (\mu(\overline{x}) \lor \mu(y))$ $\land \mu(x) \ge (\mu(\overline{x}) \lor \mu(y)) \land \mu(x) = (\mu(\overline{x}) \land \mu(x)) \lor (\mu(y))$ $\land \mu(x)) = \mu(x)) = \mu(1) \lor (\mu(y) \land \mu(x)) = \mu(x) \land \mu(y)$. Using (5) of Proposition 1.2, this Proposition is proved. **Proposition 2.6.** If μ is a fuzzy positive implicative ideal of X, then $\mu(x) = \mu(xy) \wedge \mu(xy)$ for all $x, y \in X$.

Proof: $\mu(x) = \mu(1 * \overline{x}) \ge \mu((1 * (1 * y)) * \overline{x}) \land \mu(1 * y) * \overline{x})$ = $\mu(yx) \land \mu(x\overline{y})$. But $xy \le x$ and $x\overline{y} \le x$ and hence $\mu(xy) \land \mu(x\overline{y}) \ge \mu(x)$.

Example 2. Let $X = \{0, 1, 2\}$ in which the binary operation * is given by the table then (X, *, 0) is bounded commutative BCK-algebra with unit 2. Define $\mu: X \to [0, 1]$ by $\mu(0) = a \ \mu(1) = b \ \mu(2) = c$ with $a \ge b \ge c$. Routine calculation gives that μ is a fuzzy weakly implicative ideal of X. If x = 2, y = 1 then $\mu(2) = c$. But $\mu(2 \cdot 1) \land (2 \cdot 1) = \mu(1) \land \mu(1) = b$. In fact, $(2 * 1) * 1 \ne 1$. Hence above proposition may not be true for a fuzzy weakly implicative ideal of X.

*	0	1	_2
0	0	0	0
0 1 2	1	0	0
2	2	1	0

Theorem 2.7. If μ is a fuzzy weakly implicative ideal of X and (x * y) * y = x * y for all x, $y \in X$, then $\mu(x) = \mu(xy) \wedge \mu(xy)$ for all x and y in X.

Proof: In general $xy \le x$, $x\overline{y} \le x$. So $\mu(xy) \ge \mu(x)$ and $\mu(x\overline{y}) \ge \mu(x)$. Hence $\mu(xy) \land \mu(x\overline{y}) \ge \mu(x)$. We claim that $\mu(x) \ge \mu(xy) \land \mu(x\overline{y})$. $\mu(x) = \mu(1 * \overline{x}) = \mu((1 * \overline{x}) * \overline{x}) \ge \mu((1 * (1 * y)) * \overline{x}) \land \mu((1 * y) * \overline{x}) = \mu(yx)$ $\land \mu(x\overline{y}) = \mu(xy) \land \mu(x\overline{y})$.

Corollary 2.8. Let I be a positive implicative ideal of X and let $x, y \in X$. Then $x \in I$ if and only if $xy \in I$ and $xy \in I$.

Example 3. Let $X = \{0, 1, 2, 3\}$ be given and the binary operation * of X is defined by the table. Then (X, *, 0) is a bounded commutative BCK-algebra with unit 3. It is easy to show that a nonempty subset $\{0, 2\}$ of X is a weakly implicative ideal of X.

*	0	1	2	3
0 1 2 3	0 1 2	0 0 1	0 0 0	0 0 0
3	3	2	1	9

Theorem 2.9. Let I be a weakly implicative ideal of X and $(x \cdot y) \cdot y = x \cdot y$ for all x, y in X. Then $x \in I$ if and only if $xy \in I$ and $xy \in I$.

Proof: Suppose that $x \in X$. Since I is a weakly implicative ideal of X, χ_I is also a fuzzy weakly implicative ideal. By Theorem 2.7, $\chi_I(x) = \chi_I(xy) \wedge \chi_I(x\overline{y})$. $\chi_I(xy) = \chi_I(x\overline{y}) = 1$. Hence $xy \in I$ and $x\overline{y} \in I$. Conversely, suppose that $xy \in I$ and $x\overline{y} \in I$, then $\chi_I(xy) = \chi_I(x\overline{y}) = 1$. Since χ_I is a fuzzy weakly implicative ideal, $\chi_I(x) = \chi_I(xy) \wedge \chi_I(x\overline{y}) = 1$. Therefore $x \in I$.

Corollary 2.10. Let I be an ideal of X which is both weakly implicative and prime ideal of X, then for each $x \in X$, either $x \in I$ or $x \in I$.

Proof: $(x * y) \land (y * x) = 0$ imply $(x * \overline{x}) = 0 \in I$. Since I is a prime ideal, either $x * \overline{x} \in I$ or $\overline{x} * x \in I$. So either $x^2 \in I$ or $\overline{x}^2 \in I$ or $\overline{x}^2 \in I$ or $\overline{x}^2 \in I$. By Corollary 2.4, $x \in I$ or $\overline{x} \in I$.

Corollary 2.11. Suppose that μ is both fuzzy weakly implicative and fuzzy prime ideal of X. Then the followings hold for all $x, y \in X$,

$$(1) \mu(x \vee y) = \mu(x) \wedge \mu(y),$$

$$(2) \mu(x \wedge y) = \mu(x) \vee \mu(y),$$

$$(3) \mu(x) \wedge \mu(x) = \mu(1),$$

(4)
$$\mu(x) \vee \mu(\bar{x}) = \mu(0)$$
.

Proof:(1) It is clear by Proposition 2.5.

(2) Since $x \wedge y \leq x$, y, $\mu(x \wedge y) \geq \mu(x) \vee \mu(y)$. We claim that $\mu(x \wedge y) \leq \mu(x) \vee \mu(y)$. Note that $\mu(x(x \wedge y)) = \mu(x * y)$ and similarly $\mu(y * (x \wedge y)) = \mu(y * x)$. But $(x * y) \wedge (y * x) = 0$. Hence $(x * y) \wedge (y * x) \in X_{\mu}$ which is prime by Proposition 1.4. Thus either $x * y \in X_{\mu}$

 X_{μ} or $y * x \in X_{\mu}$ i.e. $\mu(x * (x \wedge y)) = 0$ or $\mu(y * (x \wedge y))$ = 0. By (3) of Proposition 1.2, $\mu(x) \ge \mu(x \wedge y)$ or $\mu(y) \ge \mu(x \wedge y)$. So $\mu(x) \lor \mu(y) \ge \mu(x \wedge y)$.

(3) It follows by (5) of Proposition 1.2 Since X is bounded, $\mu(x) \wedge \mu(\overline{x}) = \mu(x) \wedge \mu(1 * x) = \mu(1)$.

(4) Let $I = X_{\mu}$. Since μ is a fuzzy weakly implicative and prime ideal of X, by Theorem 2.10, either $x \in I$ or $\overline{x} \in I$ then $\mu(x) = \mu(0)$ or $\mu(\overline{x}) = \mu(0)$. Thus $\mu(x) \vee \mu(\overline{x}) = \mu(0)$.

Corollary 2.12. If μ is both fuzzy weakly implicative and fuzzy prime ideal of X, then $Im\mu = {\mu(0), \mu(1)}$.

Proof: By above theorem, $\mu(x) \wedge \mu(\overline{x}) = \mu(1)$, $\mu(x) \vee \mu(\overline{x}) = \mu(0)$. Then for all $x \in X$, either $\mu(x) = \mu(0)$ or $\mu(x) = \mu(1)$. So $Im\mu = {\mu(0), \mu(1)}$.

REFERENCES

- Shaban. A. Bhatti, M. Anwar Chaudhry, B. Ahmad, "On classification of BCI-algebras", Math. Japon, Vol. 34, No. 6, pp. 865-876, 1989.
- C. S. Hoo, "Fuzzy implicative and Boolean ideals of MV-algebras", Fuzzy set and systems, Vol. 66, pp. 315-327, 1994.
- C. S. Hoo, "Fuzzy ideals of BCI and MV-algebras", Fuzzy sets and systems, Vol. 62, pp. 111-114, 1994.
- K. Iseki, S. Tanaka, "An introduction to the theory of BCK-algebras", Math. Japon, No 23, pp. 1-26, 1978-79.
- K. Iseki, S. Tanaka, "Ideal theory of BCK-algebras", Math. Japon, Vol. 21, pp. 351-366, 1976.
- Y. Imai, K. Iseki, "On axiom of systems of proportional calculi XIV", Proc. Japan Academy, Vol. 42, pp 19-22, 1966.
- Y. B. Jun, "Characterization of fuzzy ideals by their level ideals in BCK (BCI)-algebras", Math. Japon, Vol. 38, No. 1, pp. 67-71, 1993.
- Y. B. Jun, E. H. Roh, "Fuzzy commutative ideals of BCK-algebras", Fuzzy sets and systems, Vol. 64, pp. 401-405, 1994.

- J. Meng, "Commutative ideals in BCK-algebras", Pure Appl. Math.(in China), Vol. 9, pp. 49-53, 1991.
- Daniel Mundici, "MV-algebras are categorically equivalent to bounded commutative BCK-algebras", Math. Japon, Vol. 31, No 6, pp. 889-942, 1986.
- Xi Ougen, "Fuzzy BCK-algebras", Math. Japon, Vol. 36, No. 5, pp. 935-942, 1991.
- A. Rosenfeld, "Fuzzy groups", J. Math. Anal, Appl Vol. 35, pp. 512-517, 1971.
- Lei Tiande, Xi Changchang, "P-radical in BCI-algebras", Math. Japon, Vol. 30, No. 4, pp. 511-517, 1985.
- T. Traczyk, "On the variety of bounded commutative BCK-algebras", Math. Japon, Vol. 24, pp. 283-292, 1979.
- L. A. Zadeh, "Fuzzy sets", Inform. and Control, Vol. 8, pp. 338-353, 1965.

김 영 회(Young-Hee Kim) 정회원 1975년: 연세대학교 수학과 졸업 1986년: 동대학원 졸업(이박) 1983년~현재: 충북대 자연과학대 수학과 교수

남궁윤미(Youn-Mi Nam Koong)정회원 1982년:연세대학교 수학과 졸업 1986년:동대학원 수학과 졸업 (석사)

1994년~현재:충북대학교 대학 원 수학과 박사과정

오 은 정(Eun-Jung Oh) 정회원 1993년:충북대학교 자연과학대 학 수학과 졸업 1996년:동대학원 수학과 졸업 (석사)