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Estimation of Gini Index of the Exponential
Distribution by Bootstrap Method

Suk-Bok Kangl), Young-Suk Cho?)

Abstract

In this paper, we propose the jackknife estimator and the bootstrap estimator of
Gini index of the two-parameter exponential distribution when the location parameter
@ is unknown and the scale parameters is known. Similarly, we propose the bias
corrected estimator of Gini index by using the bootstrap estimator of bias when the
location parameter § and the scale parameter o are unknown. The bootstrap estimator

is more efficient than the other estimators when the location parameter § is unknown
and the scale parameter ¢ is known, and the bias corrected estimator is more efficient

than the MLE when both the location parameter § and the scale parameter ¢ are
unknown.

1. Introduction

The Lorenz curve and Gini index have been extensively used in the study of inequality
distribution and used to be a powerful tool for the analysis of a variety of scientific problems;
e.g., as a criterion to perform a partial ordering of social welfare states, to extend the concept
of the Lorenz curve to functions of income. The Lorenz curve is given by

L= [ yFG)aEX), )

where X is a nonnegative income variable for which the mathematical expectation
p=F(X) exists, and p= F(x) is the cumulative distribution function. The Gini index (also
known as Gini concentration ratio or Gini coefficient or Lorenz concentration ratio) is twice
the area between the Lorenz curve and the identity function (equidistribution function)
L(x) = F(x). Since the cumulative distribution function of all specified models of income
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distribution are strictly increasing and continuously differentiable functions, x= F () is
well defined. Replacing it in (1),

L= [F (D BX).

Moothathu (1985a) derived the exact and asymptotic distributions of MLEs of Lorenz curve
and Gini index of an exponential distribution. Moothathu (1985b) also derived the MLEs of
Lorenz curve and Gini index of a Pareto distribution, their exact and asymptotic distributions
and moments. Moothathu (1990) obtained the uniformly minimum variance unbiased estimator
(UMVUE) and a strongly consistent asymptotically normal unbiased estimator (SCANUE) of
Lorenz curve, Gini index and Theil entropy index of a Pareto distribution.

The jackknife was frist introduced by Quenouille (1956) and Tukey (1958), who realized its
importance as an almost universally applicable tool for bias reduction and robust interval
estimation. This method is a powerful idea for bias reduction and distribution free estimation
of the variance of an estimator. The jackknife method and its application to bias reduction and
dispersion estimation have been surveyed by Miller (1974). The bootstrap method, introduced
by Efron (1979), is a resampling technique. It has been used to estimate variances, confidence
intervals, and hypothesis testing problems. The bootstrap method and other methods for
assessing statistical accuracy are summarized by Efron and Tishirani (1993). We consider the
Lorenz curve and the Gini index based on a random sample from an exponential distribution
with cumulative distribution function

F(x) = (X<x)=1—exp{—(x—6)/d}, 0<{6<x, 0<o.

The Lorenz curve L(p) and the Gini index g(8,6) of the exponential distribution are
given by

P
L) = LF‘I(t) dt/ E(X)
=p+o(6+0) ' (1—-plog(l—p), 0<p<1

and

20,0 = 1-2 [ L(p db = o/20+0).

In section 2, we propose the jackknife estimator J( é;) by using the MLE and the

bootstrap estimator f(g) by using the jackknife estimator when the location parameter & is

unknown and the scale parameter ¢ is known, and show that the jackknife estimator J( ﬁ) is
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converges in probability to g(6,0). Similarly, we propose the bias corrected estimator g—z

by using the bootstrap estimator of bias when both the location parameter 8 and the scale
parameter 0 are unknown. In section 3, we compare the mean square error of the several
estimators through Monte Carlo Method and summarize the numerical results.

2. Estimators of Gini index

Let X, (r=1,2,...,m) be the r-th order statistics based on a random sample of size n
from F(x) and let S = Z.nl(X,-—X(D)/n. It is well know that the joint MLE of (8,0) is
(X@,S). By this result, Moothathu (1985a) obtained the MLE & =0/2(Xn+0) and
almost sure convergence of é\l when the location parameter 6 is unknown and the scale
parameter ¢ is known. Similarly, he obtained the MLE 2:=S/2(X»+S) and almost sure
convergence of é; when the location parameter 8 and the scale parameter ¢ are unknown.

We are considering the MLE when the scale parameter ¢ is known, and define

d2(Xpta, if X;+Xq

L

02(Xp+a), if X;= X

to be the MLE defined on the subsample which arises when the i-th subset of size one has
been deleted, and the average

)

._IE/n

={(n—1)a/(X(1)+a)+a/(X(2)+d)}/2n.

iy

g

The jackknife estimator of g(6,6) is given by
X&) = ngi—(n-1) &

= (2n—1)0/20(X @+ — (n—1)0o/2n(X 3 +0).

From Grodshteyn and Ryzhik (1965) formula 3.352, the expectation of Jg) is given by
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E[X&)] = f:% exp(—w)dx

g
- 4 (ow( - ) - - A0

oo 2 ( _ )2 ( _ 2
= St ore (2 ) 2(xn+61+a) exp(— "alx)d"

= —n2e™0rNEB [ —n(B+0)/0]/2

+ (n—1)2e " VOrIop 1 (4—1)(8+0)/a)/2

where E;(x)=C+In(—x)+ kz_:lxk/ (kxk!)and C is Euler's constant. The following theorem

shows that the jackknife estimator J(2;) converges in probability to £(8,0).

Theorem. Let X;,X,,..,X, is a random sample of size n from the exponential
distribution function F(x) with unknown # and known g. Let g(,0) is the Gini index of
exponential distribution. Then Kg))= Q@n—Da/2n(X y+0)—(n—1)a/2n(X (5y+0) is a

consistent estimator of g(6,0).

Proof. Since E[(X)—8)?1=20%/n" and E[(X@—0)%1=2(3n*-3n+1)d*/(n—1)nt,
we get X 2, 0 and X @ 2, 9. From these results and Slutsky’s theorem, we obtain

X&) 2 2(6,0).

The Bootstrap method algorithm is the following. First, we select B independent bootstrap
samples X', X", ..., X"® each consisting of n data values drawn with replacement from the

population of n observations( X;, X,, ..., X,). Second, evaluate the bootstrap replication

corresponding to each bootstrap sample ( $=1,2, ---,B)

JE(B) = 2n—1)o/2n(X)(8) +0) — (n—1)0/2n(X () +0)
and

2(0)=S5"(6)/2AX (D) +S"(B),

where S*(8) = g!l(X?(b) X4 (B)/n.
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B
We propose the bootstrap estimator f(a) = bzlf(a(b))/ B by using the jackknife

estimator when the location parameter 6 is unknown and the scale parameter ¢ is known.

When both the location parameter € and the scale parameter ¢ are unknown, we want to

estimate the real valued parameter g(6,6). We will take the MLE g; as an estimator of
2(6.0) and the bias of g, is defined to be the difference between the expectation of g
and the value of the parameter g(0,0), biase(2;)= Erl 25]—g(0,0). We can use the
bootstrap to assess the bias of the MLE é; The bootstrap estimator of bias is proposed by
Efron(1979a), and.defined to be the estimator biasr, (2;) =EF, [é;]—é; by substituting
empirical distribution F, for F. We use approximately the bootstrap expectation E p, [é;]
by the average é;( - )= éléz( b)/B. Thus, the bootstrap estimator of bias based on the B
replications is biasp(Z) =&5( - )—Z. We propose the bias corrected estimator g of

g(8,0) as follows;

g = §2- 51‘58\3(8/’;)

2 gAz—ég( ).

3. The Simulated Result

We calculate the mean square errors of several estimators for sample size n = 5(30)5 (based
on 1,000 Monte Carlo runs and B=1,000) when the location parameter 8= 0.5(1.0)2.5 and the

scale parameter ¢= 0.5(0.5)1.5. From the table, the bootstrap estimator ](é?) is more efficient
than the other estimators when the location parameter § is unknown and the scale parameter
o is known, and the bias corrected estimator g_z is more efficient than the MLE when the

location parameter § and the scale parameter ¢ are unknown. We can also see that the MSE

decreases as @ increases or ¢ decreases.
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Table. The mean square errors of several estimators

s 0=10.5
" 21 Ka) ](2 ) g9 &2
5 .00325 00273 .00268 02772 .02294
10 .00095 .00086 .00074 00991 .00818
05 15 .00042 .00043 .00031 00612 .00538
’ 20 00025 .00024 .00019 .00398 .00350
25 .00017 .00018 .00013 00325 .00297
30 .00013 00012 .00010 00276 .00250
5 00023 .00020 00018 00863 .00858
10 .00007 00007 .00006 .00403 .00400
15 15 .00004 .00003 .00003 00257 00251
) 20 .00002 .00002 00001 00197 .00196
25 .00001 00001 .00001 00146 .00148
30 .00001 .00001 .00001 00125 .00124
5 .00005 .00005 .00004 .00435 .00447
10 .00001 .00001 .00001 .00207 00210
925 15 .00001 .00001 .00000 .00139 00142
’ 20 .00000 .00000 .00000 .00103 .00102
25 .00000 .00000 00000 .00079 .00078
30 .00000 .00000 00000 00068 .00070
Table.(continued)
9 6=1.0
" £ Kar) Kel) éE £
5 00822 00699 00672 04077 02849
10 00268 00247 00212 01297 .00939
05 15 .00135 00212 00104 .00708 00527
’ 20 i 00086 00078 00066 00519 .00409
25 00055 00054 00042 00367 00296
30 00042 .00043 00033 .00308 .00259
5 00132 00111 .00106 01964 01725
10 00044 .00049 00034 00792 00726
15 15 00021 00019 00016 00484 .00455
’ 20 .00011 00010 00008 00335 00317
25 .00008 00008 .00006 00285 00271
30 .00005 .00004 .00004 00222 .00206
5 .00039 .00034 .00031 01156 .01109
10 00010 00009 .00008 00492 .00463
95 15 00005 .00005 .00004 00312 .00305
’ 20 .00003 .00003 .00002 00230 00228
25 00002 .00002 .00001 .00184 .00181
30 .00001 .00001 .00001 00149 .00142
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Table.(continued)

o=1.5

o n & & | 1@ & o
5 01405 01206 .01188 04978 03308
10 00403 .00392 00317 .01398 .00966
05 15 00226 00225 00179 00802 00574
’ 20 00126 00116 .00099 00450 .00335
25 .00094 .00084 00074 00386 00285
30 .00058 .00053 .00044 00233 00178
5 00316 00266 00260 02778 02223
10 .00099 00089 00078 01100 00921
15 15 .00046 00046 .00035 .00602 00542
' 20 .00026 00025 .00020 00432 .00383
25 00017 00016 .00013 00343 00305
30 00013 00014 .00010 00253 00237
5 00110 00104 .00088 01635 01488
10 .00031 .00028 00024 00757 .00692
o5 15 00015 00015 00011 00433 .00405
’ 20 .00009 .00009 00007 00321 .00305
25 .00006 00005 .00005 .00262 00251
30 00004 00004 00003 00207 .00198
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