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Convergence Properties of
a Spectral Density Estimator
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Abstract

This paper deals with the estimation of the power spectral density function of time
series. A kernel estimator which is based on local average is defined and the rates of

convergence of the pointwise, Ly-norm and L .-norm associated with the estimator

are investigated by restricting as to kernels with suitable assumptions. Under
appropriate regularity conditions, it is shown that the optimal rate of convergence for

0¢7<1 is N7 both in the pointwise and L,-norm, while N"'(logN) ~"is the
optimal rate in the L »—norm. Some examples are given to illustrate the application
of main results.

1. Introduction

The problem of estimating the second order characteristics, namely the covariance function
r¥(m)=E(X,X ;1,J, m=0,%1,£2,--, or its Fourier transform, the spectral density

fx(w), is one of the most important problems of time series analysis dealing with stationary
random process X=(X,). For this reason, many different methods for estimating the density

function fx(w) have developed and widely used in many fields of science. Especially, the

periodogram approach based on the periodogram IN(a))=71\7IYN(a))|2, where

YMw) = éleke"h’k, we (-1,

which is constructed over the sample X; X, -, Xy plays a central role in the spectral

analysis of time series since the introduction of the fast Fourier transform for evaluating
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discrete Fourier transforms. This approach for estimating the spectral density is computational
efficient and produces reasonable results for a large class of time series or random processes.

In particular, if X is strictly stationary and summable second and fourth order cumulant
functions, the periodogram Ip{w) is asymptotically unbiased as an estimate of the spectral

density. This means that the bias of the periodogram as an estimate of the spectral density

fx(w) tends to zero rapidly as N — oo under reasonable smoothness conditions on fx{w).

However, in spite of the advantages, the periodogram is an unsatisfactory estimator of the
spectral density since it is inconsistent in the sense that it does not converge to fx{w)in
mean square. Thus, this drawback of the periodogram is still troublesome when analyzing
long data records. However, it is known that for any two fixed neighboring frequencies,
) w,, the covariance Cov [ Iy(w;),Ix{w;)] tends to zero as N — oo, This suggests that an
appropriate smoothing of the periodogram with a weight function, which does not restrict the

possible form of function with the finite set of parameters, might lead to a reasonable
estimate.

Now we consider a nonparametric estimator for the spectral density function: for
we [—nrn,

x(@) = 4 3 W eV, @)+ an) oRY

where Wj{+) is a real function which decreases at a suitable rate relative to
N, w,=2nh/Nis the Fourier frequency at # = 0, 1,'-, [N/2], g(N,w) is the nearest
Fourier frequency to w(the smaller one if there are two) and my is some positive integer

which depends on N.

This estimator was introduced by Brockwell and Davis (1991) and further investgated by
Shin (1994). As the usual methods of spectral analysis, the above estimator have associated
with window functions Wy which are independent of the data or the properties of the time

series which is analyzed. This window function relates the average estimated spectrum to the
true spectrum. Instead of the fixed neighborhood, the estimator employs varying neighborhoods
which depend on the fixed number of frequencies in the frequency domain. The estimation
procedure first estimates the autocorrelation lags from the sample data, Fourier transforms the
estimates to obtain the periodogram, and then windows the periodogram in an appropriate
manner to obtain the power spectral density estimate.

There are many different forms of Wy which we can use, all of which lead to consistent
estimates of fy(w). In choosing a weight function it is necessary to compromise between

bias and variance of the spectral estimator. In order for the estimate fx(w) to be optimal
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including consistency we impose basically the following assumptions on my and Wy :

Assumption A :
my— o and my/N— 0, as N> oo,

Al
A2. W(h) = Wy(—h) for all h.
A3 IEmNWN(h) — 1, as N— oo,

Ad. "Emﬂl Wi k)| is bounded for all N.
As, EMNWN(;;) — 0, as N— o,

Furthermore, throughout this paper we restrict ourselves to a general linear process

X, = kZ_ ap Z ;pwith k_z_mlakllk“/z(oo and EZ} (o, where Z, are independent and

identically distributed random variables with zero mean and variance ¢°. The condition

3 _laglld*Ceo implies 3 af <o which ensures that (X)) is stationary with finite

== —co

variance.

Under Assumption A, the estimator fx(a)) is weakly consistent for fx{®). In Brockwell
and Davis (1991), it is shown that fx(w) converges in mean square to fx{(®) uniformly on
(=, 7). In fact, the assumptions Al and A3 ensure that E fx(w) — fx(w), and A5
ensures that Var fx(w) — 0, uniformly in @. The asymptotic distribution of fx(w) was
proved in Rosenblatt (1984) indirectly through the normality of fx(w) under assumptions on

weight function and cumulants which are similar to the assumptions Al —A4. Moreover, to
gain more information on these asymptotic properties, Shin (1994) considered the rates of
convergence of the estimators. Under some appropriate conditions, they proved that this

estimator posses the optimal rate of convergence N~ both pointwise and in the L,-norm,

and the optimal rate of convergence N" '(logN) ~'in the L o-norm.

In this paper we confine our attention to this optimal rate of convergence of the estimator
and decide the bandwidth and the form of the spectral window achieving the optimal rate of
convergence, mainly through some specific cases which are corrimonly used in time series
analysis.

The rest of this paper is organized as follows. The asymptotic properties of the estimator
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#x(w) are investigated in Section 2, along with the results on rates of convergence. The

bandwidth and the form of the spectral window achieving the optimal rate of convergence are
given in Section 3. The proofs for the main theorems of Section 2 are given in Section 4.

2. Optimal Convergence

In general, the asymptotic optimal properties of the estimator Fx(w) depend more critically
on the choice of bandwidth, my, than on the functional form of the spectral window Wy, In

the particular frequency , therefore, the optimal rate of convergence of the estimators for
each criterion mainly depends on the choice of window only through 7. However, in the
asymptotic theory of the spectrum the smoothness conditions of the spectral density function

of the underlying process is basically required. We start this section by introducing some
smoothness conditions on spectral density function which ensure the optimal rate of

convergence properties of the estimator fx(a)). The spectral density function has to fulfill

certain smoothness requirements to be specified below:

Assumption B :
Bl. fx(w) is continuous on [—=, x].

R. l?..:.mlfx(h)llhl = B (oo,

As measures of the quality or optimal criteria of the estimator fx(w) we will use the
pointwise, L,—-norm and L .—norm.

Now, we shall state the main theorems of this paper, which give more local consistency
results of the estimator and the proofs will be given later on. For the variables ay and by

we shall use the notation ay~by if an/by— 1 as N — oo, Given random variables
Xy N 21, let Xy=04ay) mean that the random variables ay'X ~, N = 1 are bounded
in probability or, equivalently, that

lim liInSLlep(lle > caN) = 0.
0

Theorem 2.1. Suppose that Assumption B is fulfilled and that the following conditions
hold: for Sy~N " with 0<»<1,

(l) my ~ N8N
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(#2) II’EmNWN(h)—Il = (N,
. _ —2
€77)) VEMN Wih) = O(N™%),

Then | fx(@) — fx(@)l = ON7"), e [—nxnxl.

Theorem 2.2. Suppose dxy~N " and that the conditions in Theorem 2.1 are fulfilled.
Then || #x(@) — fx(o)l; = O,N™").

Theorem 2.3. Suppose that Assumption B is fulfilled and that the following conditions
hold: for dy~N""!(logN) ™" with 0<#<1,

() my~ Noy
@ 1,5 W) — 11 = 08w,

(i7) "E Wih) = O(N™) fors>x+2 where x is the proper positive integer. Then there
my

exists a positive constant C such that for every w € [—r, 7],

lim (| Fx(®) — flo)lle = CN" Y(logN) ™) = 0.

Remark. The results in the above theorems are optimal in the minimax sense according to

Stone (1982). That is, N~ is said to be achievable rate of convergence and the estimate
Fx(w) is said to be asymptotically optimal.

3. Some Windows with Optimality

In this section, we consider the bandwidth and the form of the spectral window achieving

the optimal rate of convergence, mainly through some specific cases which are commonly used
in time series analysis.

As observed before, the asymptotic optimal properties of the estimator fx(w) depend more
critically on the choice of bandwidth, my, than on the functional form of the spectral window
Wy Therefore, in the particular frequency @ the optimal rate of convergence of the

estimators for each criterion mainly depends on the choice of window only through 7.
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First we consider the approximating form of the estimator fx(a)). From Assumption A,

the function Wy in (1.1) is symmetric with it weights inversely proportional to the
magnitude of the lag A, so that we can express

Fe(w) = <L X, Wil IM(&(N, &) +w,)
2 W<(1

which is approximately equal to

1 v WMo w+w,) S5
27 ey widato,

= L [7 mone+d @ = L 7 Wo-d1n) @ 3.0

where W(a),,)— WN(h) |W<[N/2]. Let Ty be a function of N such that Ty— © and

N — oo, Define uf I@N) = f_iVKw)em do; |[W<Ty so that

TN/N -0 as
Wao) = 5= "?‘_.an( Ty )¢ ™" then the right hand side of 8.1) is
2 px .
(411 Bl ) e on a

x o - iwh
= 2” |FT~ ( TN) e IN(A) dA e ",

Thus we have an approximation
y ~ 1 h\= —iwh
Frw) = 5o I}Em”w( mN)r(h)e :
Next, we decide the bandwidth my through #» for optimal convergence rate of the

estimator fx(w) for three criteria. From the definitions we have

BT = (B 5 W(wy)

< 2 3 W(w)2E 21 3.2)
W<

= 2—1\7; f_xx W(w) do.
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Furthermore, if we extend w as a bounded continuous even function on R' such that

lw(nl<1, w(0)=1, w(x)=u(—x), w(x)=0; |x>1 then the last expression with the
integral term of (3.2) is equal to

2r (" (_1 _h o\ i\
N J-« ( 2r IIETNM'( TN)e ) dw

T
W EAE) - W e

Now, let my= N/ Ty. Then we obtain

2r 1
N 5 Wh < S [ wia) ar < NR. (33)

which is bounded only when #=1/3 since the order of my is O(N'™"), where R is some
constant.
Thus, if the spectral window Wy (or the corresponding lag window) has the lag window

generator w(x), and moreover if my= O(N*®) in the estimator Fx(w), then the main

theorems guarantee that the estimator possesses the optimal rate of convergence N “18 poth
pointwise and in the Lj-norm; and the optimal rate of convergence (N?logN) 13 in the
L-norm. Fortunately, almost all the windows including Truncated, Bartlett, Daniell, Parzen,

Blackman-Tukey, Bartlett-Priestley window etc, which are commonly used in time series

analysis are of the scale parameter form of w(x), the some exceptions being the Whittle,
Daniell and Bartlett window.

Finally, for the practical application, we consider a simple example (the moving average
smoothing);

Walh) = 7,,”{,—_,_1 T i<mg (B

where J4 is the indicator function on A. Assume that the time series X, is the linear

process satisfying the wunderlying conditions. Evidently, the weight function satisfies

. . -1 : . = 1- .

Assumption A. Moreover, since I)Emu%(h) Tl if we impose my= O(N'™") with

r=1/3 then N? ?-‘_. Wilh) = N is bounded. The main results in Section 3
IH<my INTTH1 ’

therefore guarantee that the optimal convergence rate of the estimator fx(w) in both

pointwise and L, sense is N B8 for any frequency @ on [—n, 7).
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4. Proofs of Main Theorems

This section contains proofs for the main theorems of Section 2, which are the result of the
rates of convergence for the pointwise, L,—norm and L —norm.

For notational simplicity we shall write m for my the dependence on N being understood.

Proof of Theorem 2.1. It sufficies to show that for sufficiently large C,
P( (@) — flw)l = CN") =0, as N— o,

Note that for all @, | fx(@w) — fx(w)| is less than or equal to

|IEMWN(h){—2l;IN(g(M(D) + @) — flg(N.w) + w,,)}l

+ 12 W feN, @) + @) ~ flo) @D
+ 1 (@] 3 W) — 1.

Since fx(w) is continuous, the third term of (41) is O(N™") in virtue of (ii). By the
definition of spectral density function fx{®), | fx{g(N,w) + @) — fx{w) becomes:

| B rdWexn(~iha) lexp(~ihgN, @) + @y — @)} — 1]

which is less than or equal to
1 o0

57 h_Z_mlrx(h)Hexp{—ih(g(N.w) + o, — @)} — 1

< 4 3 IrdlbIEgN,6) + ox— o

- — 00

<& (5 + )

Now we may deduce from (i) that the second term of (4.1) is equivalent to O(N™").
Therefore, it suffices to show that as N — oo

P(l IFSmWN(h){—ZlEIN(g(M w) + wp) — fx(&N, w) + a),,)” > CN"’) —0.

Put %IN(g(N,w) + w) — fx(&(N, w) + wy) = Uy fx{&(N,®) +w,) where the sequence

{ U,}is approximately WMW0,1) for large N by Theorem 10.32 in Brockwell and Davis (1991).
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For sufficiently large N,
P(| % W WUifxig(N, ) + wpl = CN™)

; Walh) 5 &N, w) + w,,)
(CN™"?
The last expression is less than or equal to

max jg<m (&N, ) + @) ]EngN(h)

which converges to 0 by (iii) and the continuity of fx{®). Therefore the proof is complete.

Proof of Theorem 2.2. We show that
1/2

A{ [ 7x(@) ~ f(o)?da) = CNT) =0 as N,

By the asymptotic unbiasedness of fx, it is enough to show that

P(foxl (@) — E ix()? do 2 CZN”Z’) —0 as N— oo,
Note that

. E[1 /(&) — E (o) do
P(fo | 7x(@) — E Fx(@)?® do = CzN_Zr) < J; x N b . 42

The right hand side of (4.2) is also less than or equal to

d [ u?smwﬁ”(h)fg"(m + 0( |Fsmvz"z(h))2 2 )2N IF W”(h)(zmﬂ)}
N~

The inequality (4.2) is obtained by Markov’s inequality and the last expression is obtained
by Theorem 10.4.1 in Brockwell and Davis (1991). Now the result follows by the conditions
(), (iii) in Theorem 2.1.

Proof of Theorem 2.3. In order to prove the theorem it is convenient to restrict fx(w)
to a grid GyC[0, 7] and define a new estimator fx(w) on all of [0, 7]. Set Dy=[68x'1,
where [ 1 denotes the greatest integer function. Let Gy be the collection of (Dy+1) points
in [0,7] each of whose coordinates is of the form jx/Dy for some integer j such that

0<j< Dy. Correspondingly, [0, 7] can be written as the union of Dy subintervals, each



280 Gyeong Hye Shin, Hae Kyung Kim

having length Ay= Dy' and all of its vertices in Gy Hence for each w<[0, 7], there is a
subinterval @, with center ¢ such that o=@,
Let Cy denote the collection of centers of these subintervals. Then

P(sup uepo.q | Fx(@) — fx(@)) = CN""'(logN) ™)
= P(Max wc,Sup weq, | fx(@) — fx(@)l = CN"'(logN) ).

Since |fx(f) — fxlw)l < C)lt —w| < CiAy for some constant C; |fx(§) —fx{@)|= O(Sy).
Therefore it is enough to show that
P(max ec,SUD weg, | Fx(@) — fx(Hl = CN"'(logN) ™) = 0 as N— oo,

Set K=[m+NAy]. Define for each t€Cy,
7 = 1
Fu(d = -k S WDIGEN.D + o).

It is sufficient to show that there is a positive constant C such that
P(max ,ec,SUp weq, | fx(@) — Fx(O = CN"'(logN) ) >0 as N—> o  (43)
and |
P(max e, | fx() — f(D = CN"(logN) ) >0 as N— oo, 4.4)
Note that

| Fxta) — FxDl < |50 2 W) INa(N.0) + @) = Ie(N.0) + o)

1 oS 1 —m-1
* IW h=2m+l W) In(g(N. ) + ‘”h)l + Iﬁ W=k Wi In(g(N,t) + cu,,)|

= (D + D+ D .
By the mean value theorem,

IMg(N, @) + wy) — INg(N,D + wpl = |IKE)IgN, 0) — (N,
for a proper &, which lies between g(N, @)+ w; and g(N, ) +w,. Hence

D = 57 3 IWAIKENEN, @) — &N, 0]
< L max e IMEDIE(N, @) — (V.01 3 |WA(A)I
< M, |g(N, @) — &N, D)

where M, = - max wenlED| supn( T 1WA,
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Since |g{N, w) —g(N, Hl = O(N" }(logN) ") +O(N Y, () is equivalent to ON" Y (logN) ™.
By similar manner, (II) and (II) are equivalent to O(N" '(logN) ™). Hence (4.3) is valid.
Observe that

Fed = fuld = T WD {5 IeN.D + @) — F(gN.) + o))
+ IEKWN(h) Ix(&(N, ) + wp) — fx(9)
+ (2, B — 11D,

By the condition (i), we have
max jec,l lEKWN(h) = 1lf)l = | lEKWN(h) — 1l max sec, fx(?)
= O(N"'(logN) 7.
By the condition (i) and continuity of fx(®), we obtain

max e, 3 WA f(@(N.0) + @) — fO < BCimax wec,|g(N,) + @) — 4

= O(N"iogN) ™"
where By = sup IEKl Wa(h))).

Let #(A) denote the number of elements in a set A. We know that there is a positive
constant x such that #(Cy) < N". Now

P( max ,ec, |

T ) g IKE(N.D + @) — fg(N.D + wp)| = CN"(logN) ")

< P(U| % WD Unfx(g(N.0) + @)l = CN"(logN) " )

<#(Cw P(max <k Sx(&N, ) + wp) IEKl W) Ul = CN" '(logN) —’)

x CN" YlogN) "
=N P( |EKIWN(h) Ul = “nax <k fx(g(N, t) + wh))

2

x 2 CN" Y(logN) ~"
< NE( IEKI Walh) Un) /( max <k fx(&(N, ) + wp) )

Nx+2 —2r—s0(1)
C*(logN) %

= o(1)

<
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for sufficiently large N, where the third inequality is obtained by using Markov’s inequality
and the fourth by applying the property of the sequence {U,} defined in the proof of
Theorem 2.1.
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