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Nonparametric Estimation of Reliability
in Strength—-Stress Model

H. S. Jeong)),
J. J. Kim, B. U. Park?), H. W. Lee®

Abstract

We treat the problem of estimating reliability R = PlY (X ] in the
stress-strength model in which a unit of strength X is subjected to environmental

stress Y. In this paper several nonparametric approaches to estimation of R are
analyzed and compared by simulations.

1. Introduction

let X and Y be independent random variables with cumulative distribution functions
(cdf’'s) F(-) and G(-), respectively. We are interested in estimating functionals of the
fom R = PY (X], given samples X; X, -, X,, of sizz m from X and

Y, Y, -, Y, ofsize nfrom Y.

Previous work in this field is mostly occupied by the parametric approaches for continuous
data. The most common parametric model has both X and Y normally distributed. Church
and Harris (1970), Downton (1973) and Reiser and Guttman (1986) discuss various estimation
strategies in this case. Other parametric models have also been investigated; see, e.q., Sathe
and Shah (1981),Tse and Karson (1986) and Awad and Charraf (1986).

Little work has been done on nonparametric estimation of R since Birnbaum (1956). He
proposed the point estimate

R = [ G0 dF (2
=L flGn(Xi) (L1

m =

= ﬁ {number of (7,7) pairs such that ¥;<X}
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F,(+) and G,(-) are the empirical c.df.’s of the X’'s and Y's, respectively. Note that

the numerator in the last expression is the Wilcoxon-Mann-Whitney statistic. Under the

assumption that the underlying cdf’s F(-) and G(:) are continuous, Ry is the

uniform minimum variance unbiased estimator of R.
In Section 2 three new estimators are proposed. In Section 3 consistency of the estimators

are discussed. In section 4 the three estimators and ﬁww are compared by a simulation

study.

2. Estimators of R

Replacing G, in (1.1) by other estimators of G, we propose the following three estimators
of R.

2.1 Case of known stress distribution G

In some applications, the stress distribution may be known to the investigator. The
following is an example of situations in which the stress distribution may be known. Consider
the case of telephone poles or support towers for power-transmission cables. In this case,
usually the wind loadings are so well known that the stress distribution can be derived
almost exactly.

Assume the parametric model Y ~ G( - |6) for stress. Instead of G, in (1.1), we use

G(-18) by calculating the maximum likelihood estimator (M.LE) & of 6. For example,

when Y ~ N(u,d® ,let G(- |8 = (- —7)/0) where 2 and 6 are MLE. of u
and 0, respectively. Then

iMs

(G(Xi )

ﬁbﬂ,ﬁ‘ =”};

2.2 Kernel type estimator

An approach that does not depend at all on a parametric assumption would be to estimate
the density g(») ( probability density function of ¥) using a nonparametric density

estimation procedure. In this view, we replace G,(x) in (1.1) by ﬁm 2(w) du where g(2) is

kernel density estimator. The bandwidth is selected by the biased cross-validation method
which is proposed by Scott and Terrell (1987). Then

n Xl'
ﬁKER =—}n‘ igl f_mé\(u)du .
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2.3 Estimator using median rank

Let Yh< Y=< - <Y, denote the order statistics from a random sample of G. Let
n

Gy(y) = (ZII(Y;Sy)—0.3)/(n+O.4). Replacing G, in (1.1) by G, we can obtain
=

another estimator of R defined by

m

2 GX) .

_1
Rump = m =1

3. Consistency of the proposed estimators.
In this section, we discuss the consistency of the estimators proposed in section 2.
3.1 The maximum likelihcod estimator

Under some regularity conditions on G (see Lehmann (1983), P409, for example), the MLE
d is a consistent estimator of 6. Suppose, in addition, that sup 16— 81<c 1766 G(Ma) < M(y)

for all y in the support of G( -16) with E(M(Y))<{c and ¢>(. By Taylor expansion, we
have

G(y18) = Gy |8)+ (9—0)T-aiac(y 16%)

where 6” is a point on the line segment joining & and 8.

Taking the sum of above equations for i=1, 2, - ,m and dividing by m, we see that
L$ex19 = L3
L3ox1s = L3axiie
+(0=O7- 5 B 2 GXi 16
Thus
1 & o1&y
w2 GX 18 — % G(X16)

T, 1 <h 0 18*
(6-0) m ?';.1 a9G(X.|0)
<l 8-6L 3 M(X)
=1
- 0 , in probability.
Hence .
DX 18) - EGX, 18] = P[Y<X]

1
m =1

in probability. ie. R\MLE is a consistent estimator for R.
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3.2 The kernel estimation

We can rewrite R\KER as

_ 1 n n Xi z_.Y]
Ryse = mnh iz="1;z=:1 f_mk( h ) dz,

where k() is a kernel function and # is a bandwidth. Then

X —
H Rl = LE[ WZ52) dz

= L[ LT HE) de Angly) dedy
= [ [LEED fognaudy

- f_mf_ml(x—y) Ax)g(y)dxdy as h —0
= PY<X]
t
where I(x)=1 if x>0 and otherwise 0, and K(#) = f_mk( w)du ie. the cumulative

distribution function of #( +). So R\KER is asymptotically unbiased.

X; _ v
Let 74(X;,Y;)= ’%; ka(i‘};z") dz , then

3 3 Varlm(X:, ¥))

=1 j=1

Var Ruee) = — [

mn

£

Ms

+ : Covl 9,(X;, Y;) , n(X,:, Y)]

ar)

j=1 ijm=1

+
M=
M=

35, Codl m( X, Y. i X, Y]

1

= L mne Varlnu (X, 1)

+ mn(m—1) - Covl 2,(X,, Y1) ., 24X;, Y]
+ mn(n—1) - Cov[ 7:(Xy, Y1), 74Xy, Y5)11
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Now by the similar argument leading to the asymptotic unbisedness, we have

Var [ 7,(X,, YD1 — P Y<XI{1-P Y<X]),
Covl 7,( Xy, YD, 2(X,, YD1 — P Y<min(X,, X;)]—{P Y<X]}*

and
Cov [9( Xy, Y1), 5i(X,, V)] = Plmax (Y] Yo)<X]—{A Y<X1}?
as h— (.

This show that Rpygg is a consistent estimator for R.

3.3 A estimator using median rank.
Considering the consitency of R\ww; we can easily prove that ﬁMED is consistent for R.
Rewrite R\MED as

L - ,Z: KY,<X)—0.3
m &) n+0.4

ﬁMED =

1 & vy 0.3
m(n+0.4) .'21 j§1 KY;<X) n+0.4

_ n ol S S ‘ y_ 0.3
- (n+0.4) nm .z=:1 ?-'1'1 KY=X) n+0.4
——n . g 03
(n+0.4) WV +0.4
- P Y<X]

in probability. ie. Rygp is a consistent estimator for R.

4. Simulation results.

To compare the accuracy of the estimators of R, computer simulations are performed. A
FORTRAN program run on Pentium-100 computer system is used to evaluate the Mean Sqare

Error  (M.SE) of Ruw, Buie, Rker and Rygmp. The standard package IMSL ”
International Mathematical and Statistical Library” is used. Stress random variables Y's are
generated from the Weibull distribution with a fixed scale parameter @=1 and shape
parameter A=0.5, 1.0, 3.0 and 3.5, respectively. Simulations are done with 250 replications for
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selected values of sample size (m, #) =(10,20),(20,10),(20,20),(20,30) and (30,20).

In order to vary the value of R(0.5<R<1.0) strength random variable X's are with a
scale parameter @ varing from 1.0 to 2.5 and the same shape parameter with stress random
variable Y. The MSE’s of the four estimators with the fixed sample size (2, #)=(20,30)
when B=05, 1.0, 3.0 and 35 are given Figure 1,2,3 and 4, respectively.

From these figures, five important points emerge. First, the four graphs are similar to the
trends. Second, the M.S.E. decreases as the exact R increases except Rxzr in B =05 case.

Third, Rygp is the worst in all cases. Fourthly, for the interval where 0.5 < R < (.8 ,

EKER is always the best. Finally, M.S.E.’s of I?WW, Ruyip and R\KER are nearly equal for
the large value of R.

Figure 5 6, 7 and 8 show the results of the simulation with the various sample size
(m, n)=(10,20), (20,10), (20,20) and (30,20) when fixed B=35. The four graph are similar to
the trends but the MLE'’s decreses as the sample sizes increse.

We perform the simulation with the same sample size as figure 5 ~8 when £=05, 1.0 and
3.0. These simulation results, which are omitted, are simular to the above ones.
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Figure 1. Weibull Case
(Beta=0.5,m=20,n=30)
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Figure 3. Weibull Case
(Beta=3.0,m=20,n=30)
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Figure 2. Weibull Case
(Beta=1.0,m=20,n=30)
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Figure 4. Weibull Case
(Beta=3.5,m=20,n=30)
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Figure 5. Weibull Case
(Beta=3.5,m=10,n=20)
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Figure 7. Weibull Case
(Beta=3.5,m=20,n=20)
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Figure 6. Weibull Case
(Beta=3.5,m=20,n=10)
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