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A Nonparametric Procedure for Bioassay
by using Conditional Quantile Processes

Ho Kim!)

Abstract

Bioequivanence models arise typically in bioassays when new preparations are
compared against standard ones by means of responses on some biological organisms.
Relative potency measures provide nice interpretations for such bioequivalence and
their estimation constitutes the prime interest of such studies. A conditional quantile
process based on the k-nearest neighbor method is proposed for this purpose. An
alternative procedure based on Kolmogrov-Smirnov type estimator has also been
considered along with. ARIC ultrasound data are analyzed as examples.

1. Introduction

In a biological assay (bioassay), a new (test) preparation (T) and an old (standard) one (S)
are compared by means of the reactions that follow their applications to biological organisms.
The main interest under investigation is to examine how biological organisms react to the two
preparations and to evaluate the relative potency of the test preparation with respect to the
standard. To achieve this goal, one typically consider the following model

E(Y D) = hx)= hs(ox)=E(Yy) (1)

for all x and for some p>0. In many cases, to get more symmetry for the tolerance
distributions, one typically take log transformation. Then the mode becomes

E(YD=h{x)=hg(u+x)=E(Ys), for all x for some usR, 2)

The model (2) is termed the fundamental assumption of an assay. The main interest is to
estimate the relative potency e and to verify the fundamental assumption.

Parametric procedures for these problems are usually based on the assumptions of the
distributions of Y (normal, lognormal, logistic or loglogistic), these procedures are discussed
in detail in Finney (1964). Using (generalized) linear models, the usual maximum likelihood
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estimator has many optimal properties, such as consistency and asymptotic normality under
the assumed distribution. However, these parametric estimates generally not very robust
against departures from the assumed form of the distribution function. Rank based estimates
of relative potency have been considered by Sen(1963), Shorack(1966) and Rao and
Little(1976), among others. These estimates are invariant under the choice of any monotone
transformation on the dose, and, besides being robust, are generally quite efficient for normal,
log-normal, logistic or other common forms of the tolerance distributions. Bhattacharya and
Gangopadhyay (1990) proposed k-nearerst neighbor (k-NN) estimator of a conditional quantile.
We can use the conditional quantile of the response instead of the expectation in (1), to test
the equivalence of a test preparation with respect to a standard one.

Let {(X;, Y)).7=1} be a sequence of iid. random vectors with a distribution function

m(x,%),(x, )R’ Let F(x)=n(x,),x<R and let G(3x) be the conditional df of ¥
given X=ux, for yeR,xR. A conditional quantile function (of Y given X=1x) is defined
by
£,(x)= inf{y: G(s1x)=p}, x= R, (0<p<1).

Consider the transformation (X;, Y,)(Z;,Y;) where Z;=|X;—x. For the collection
{(Z,,Y),.(Z,, YD)} of rv.'s, let Zy<-+{Z,, be the order statistics corresponding to
Zy,**,Zy,, and let Y,,-*, Y,, be the induced order statistics. (ie., Y ,=7Y; if Z,=Z;, for
i,j=1,-,n). For every positive integer k(<n), the k-NN (nearest neighbor) empirical d.f.
of Y (with respect to x) is given by

Cu(m»=Fk™ ?‘;11( Y.<y), yER,

where 1(A) stands for the indicator function of the set A. The k-NN estimator of & due to
Bhattacharya and Gangopadhyay (1990) is defined by

£,. =the [kp]— th order statistic of ¥ ,,*, Y
= inf{y: Gu(») =2k '[k]).

For the asymptotic normality results, usually, one needs that k,= O(#n%), for some A=(0,1).

Bhattacharya and Gangopadhyay (1990) proved the asymptotic normality of the k-NN
estimator for A=4/5, ie, for every t=[a, b] as n—oo,

n ?,,,[,,ﬂst] —El-NBE, p(1—p)t ' g(&) 9,

where

B(O = —[ANG o(8x) +2f ()GLA0)]1 /123 (0)g(&)]
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and
G, (M) =(3/3x)G(Mx),
G (M%) =(3%/8x1)G(x).

Sen and Gangopadhyay (1990) showed the bias term (8#) can be eliminated when
ko= O(n*5"%), They showed that for every & :k=[m*"* %], te[q,d], asn—o

n 57 B —E-NO, t 'p(1-1)/£(8).

They also considered the construction of (local) bootstrap confidence intervals for & based on
the k-NN methods, and its asymptotic normality.

2. Conditional Quantile Process

Let &(x) be the p-quantile of the df. G( - |%), x=[x;,x,]=XCR, and let %, , (%) be the

k-NN estimator for k,= O(n“ 5-2) where Z . are defined with respect to the pivot x. Note
that these Z ,; are the induced order statistics corresponding to the nearest neighbors of x
(i.e. those X,'s which are closest to x). As such, if we consider two distinct points, say
x; and X,, then the two sets of X; forming the corresponding nearest neighbors would
have at most A, members in common. The proportion of the two subsets’ common elements

will be asymptotically o(n 'k,), and we may immediately say that &, , (x;) and

£ ..+ (x3) are asymptotically independent. We set W,(x)= {W,(x), x€X} by letting

W)=k 2, . (0)—&®)], xeX.

Then the asymptotic behavior of W, is depicted entirely by the pointwise asymptotic

normality and the stochastic dependence pattern only in a shrinking neighborhood of fixed
points.

We discussed the pointwise asymptotic normality in the introduction for k,=ftn** %
(0<a<t{ b{©). We have, as n—o,
W(x)—Wx), for every x€X,

where W{x) is normal with mean O and variance pa/ (gz (& x)|x)). About the stochastic

dependency, we refer to Gangopadhyay and Sen (1993). Shrinking neighborhoods are defined
by the sets of x relative to a given x; as

L(xp K)= {x :lx— x| <Kn "'k,},
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where K is a finite positive number. For any two points, say, x, and x, , belonging to
I(xy,K), let k(x,,x,”) be the number of elements in common between the two neighbor
sets. Consider the intersection set I,(x,,x,’)

[x,— (28R %)) "y 20+ (20Rx0)) "1R,IN
[, = 2nfx0)) ", x4 + 20 xp) k).

Let m,(x,,%,”) be the length of this intersection set I,(%,,%,). Then by Bahadur

representation, we may again claim that
n k(0" ) —Rx)M (%0, %,") = 0(n "k,) a.s.as n—co.

And we may conclude that W,(x,) and W,(x,’) have asymptotic correlation

nf(x())mn(xn’ xn,)/kns (3)
and it is easy to show that for both x, and x,” belonging to [I,(x;,K), (3) has a limit

(which vanishes when m,(x,, %, )=0). In order to justify this asymptotic analysis, we need to

extend the Bahadur representation for a conditional quantile for a suitable convergence
sequence {x,}(to xy), where x,=[,(x;,K). To facilitate this, we consider a stochastic
process

Wa()= Wo(xo+n "'kat), tlty ).

Consider a compact interval C=[—K, K] where K({0) is a positive number so chosen that
KAx)<1. In passing, we may remark that (3) possesses a limit, when we set

xn=2x0+n 'ket; and x, =2x)+n kut, with #,t,€C. This is given by
[#,Rx0) —1/2, t.Ax) +1/2]INI b R %) —1/2, t,Ax,) +1/2]

which, for #> 4 is non-null when (#;—#)R%,)<1, and that is the reason we set KAx;)<1.

And under the assumption of the finite fourth moment of Z°,=G - XZ,4Y,) for
i=1,-,n,

WO ={(Wa(D, t=C)

is asymptotically tight, where WA (9= W, (xo+n 'k,) and C=[—K,K] such that

KARx)<1, forky=O(n**"%), This, in turn, implies the weak convergence of W,(x) to
Wx) for xeX.

To estimate the relative potency, we consider Kolmogorov-Smirnov type estimator g which
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T S
SUD yex | g ", k. (%) — % n k, (x+p)l.

Let 3T nk, and 35 n.k, be the k-NN estimators of the conditional medians of the test and
the standard treatments. Then we have two independent stochastic processes

Wix) =k 2,7 (0)—Ex(2)]-WHx), x& Xas n—oo
Wex) = kY 2,,.°(0) —&s()]-Welx), xe Xas n—roo

Wi{x) and Wi(x) are the Gaussian processes defined before. Under Ho : £4{x)= E(x+ ),

Wf(x)—Ws(“")=ki/2{ ‘?Tn.k.(x)— gsn.k-(x+#)}
- WHx) —Ws(x+p) x € X,

where

Wr{x) — Ws (x+ 1) ~ N0, pa(1/(&(&(0)10)) +1/(e( & x+m)lx+ 1))

for all x € X We may do the test by bootstrap sampling method; for m-dimensional
% =(%y,"**, %), we have m-dimensional multivariate normality after putting #=z. We can
estimate the variance matrix by bootstrapping method.

3. Numerical Examples

In this section, we demonstrate numerical examples. We use p=1/2, the median of the
response. Atherosclerosis Risk in Communities (ARIC) is a prospective investigation of the
etiology and natural history of atherosclerosis and the etiology of clinical atherosclerotic
disease in four US communities (Forsyth County, North Carolina; Jackson, Mississippi;
suburbs of Minneapolis Minnesota; and Washington County, Maryland) (The ARIC
investigators (1989)). Examinations included ultrasound scanning of carotid artery. The data
for the example included black female participants with second visit from all four communities.
The response variable is the average carotid artery far wall thickness(WT) scanned by
Beta-mode ultrasound equipment. The explanatory variable is Body Mass Index (BMI) which
is defined by weight/height?2 (Kg/m2). The group variable is the hypertension medicine history
which is one if the participant has taken hypertension lowering medication in past two weeks,
zero otherwise. The main interest is to test the bioequivalence of the carotid artery far wall
thickness between the two groups and to estimate the relative potency. The data has sample
size 623 and 735 for the hypertension and the normotension groups, respectively.

To test the bioequivalence between the two groups and to estimate the relative potency, we
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assume the bioequivalence model (parallelism of the two response curves) which is:
Ho: £7(x)—&5x+u)=0 for all xX. 4)

We need to check the parallelism before doing any statistical inferences based on the
assumption (4). Figure 1 shows the estimated conditional median curves over BMI, and we
decided that there is no violation of the parallelism. WT curve of the hypertension group is

greater than that of the normotension group for all BMI's. To estimate ¢, we discussed the
mini-max rule in section 2. Figure 2 shows

sup e x| &7 (- &5(x+p)l ®)

as a function of u. From the figure, we estimate  is 10 which minimizes (5), ie., the WT

curve of hypertension patients is shifted to the left by 10 units of BMI compared to the WT
curve of the normotension group.

To test (4) when £=10, as we discussed in section 2, we use
k20— 25 (x+w]-N,0, D),

for x=(x; -, x,,)" as #—, We reject Ho if
Q=k[ &, - &, G+wl 57 F,w- E.GtoD2

where Z',, is the variance matrix of [ ?T,, (x)— ?s,, (x+u)] which is asymptotically a

diagonal matrix, where 2 is the upper @ percentile from x* distribution with m d.f. Also,
we employ the following

Qd=kni2:1( ng(xi)_ ?sn(x_i'ﬂ))z '&a—l,

where G; is a bootstrap estimator of Var( éT,, (x)— ?S,, (x;+w). We use
x'=(15,20,25,30,35,40,45) with 200 bootstrap iterations to estimate 3, and 0, We
have Q=20.36 with p-value 0.005 and Q,~1887 with p=0.009. Therefore, we reject the

hypothesis (5) which means the difference between the two WT curves are statistically
significant. The difference Q—Q,=1.30 can be interpreted as the increase of the xz due to
the non-zero off-diagonal elements in Z",,. Since @Q—@,; is small, we can say that the
independence assumption of the conditional quantile over x=X is not violated.

The difference of the mean WT’s between the two groups is 0.04974. We subtract the
difference from the hypertension group and apply the test again. The values Q=5.88 with
p=0.55 and Qd=5.56 with p=0.59 were obtained. Qur conclusions are as follows: 1) the WT
curve of the hypertension group is significantly higher than that of the normotension group

for the entire range of BMI, 2) but hypertension effect-adjusted WT curves are equivalent for
the two groups; WT curves have the same shape for the two groups.
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Figure 1. Estimated conditional median carotid artery far wall thickness conditioned on BMI
for two groups.
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We have several questions which may become future research topics. There may be more
than two responses in which we need to consider the correlation structure among the
responses. To test the fundamental assumption, we can try to obtain the distribution of

sup yex] W (%) — WP (x+ )| which would make our test of the fundamental assumption of the

bioequivalence models simpler. The Kolmogorov type estimator of the relative potency may
possess some appealing properties such as asymptotic normality or consistency. One
interesting question is how to select k-NN samples for the processes. In this paper, we select
x's by the same increment over the range of interest. We may select exclusive samples to
guarantee independence among them, or we may allow some dependency by selecting not
totally exclusive samples.
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