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Change-Point Problems in a Sequence of Binomial Variablesl)

Kwang Mo Jeong?)

Abstract

For the Change-point problem in a sequence of binomial variables we consider the
maximum likelihood estimator(MLE) of unknown change-point. Its asymptotic
distribution is quite limited in the case of binomial variables with different number of
trials at each time point. Hinkley and Hinkley (1970) gives an asymptotic distribution
of the MLE for a sequence of Bernoulli random variables. To find the asymptotic
distribution a numerical method such as bootstrap can be used. Another concern of
our interest is the inference on the change-point and we derive confidence sets based
on the likelihood ratio test(LRT). We find approximate confidence sets from the
bootstrap distribution and compare the two results through an example.

1. Introduction

In this paper we are concerned with the estimation and confidence sets for the change point
in a sequence of binomial variables. Let X, X,, ‘-, X + be independent binomial random

variables with X ;~B(n, p;). The change-point problem in binomial variables can be
represented as P =py=' =p,F P, ='-=p 7 for some unknown time point z. The

MLE and other nonparametric estimation procedures using cumulative sum type statistics are
popular in the estimation of r. Similarly LRT and cumulative sum test statistics are widely
used for testing the existence of change-points.

Change-point models in a sequence of binomial variables have been treated by many
authors. Hinkley and Hinkley (1970) suggested a MLE and an LRT in Bernoulli case. They
derived exact and asymptotic distributions using random walks and also discussed the relative
efficiency of LRT with respect to MLE. On the other hand Pettitt (1979, 1980) proposed a
nonparametric estmation procedure maximizing a cumulative sum statistic which is equivalent
to the Kolmogorov-Smirnov type statistic in Bernoulli case. The power of LRT and
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cumulative surn test was compared by Worsley (1983). As we have shown in the references
above the change-point problem of binomial variables is limited only to the Bernoulli case. In
a sequence of exponential family random variables Worsley (1986) discussed about confidence
regions and tests. He also obtained critical values of LRT in particular in the exponentially
distributed random variables. But it is intractable for general distributions and we need an
alternative method such as bootstrap to solve this problem.

Confidence set or region was not so well treated until now for binomial variables. The

asymptotic distribution of 7 can be used to find confidence sets for Bernoulli case but it is

not possible in a general binomial case where its asymptotic distribution has not been known.
As commented by Hinkley and Hinkley (1970) the distribution of MLE is not degenerate and
hence it is not consistent. This unhappy state of affairs is a characteristic of chage-point
problems. We follow the procedure of Worsley (1986) to find a confidence set for
change-point in a sequence of binomial variables. We first consider LRT for testing

Hék): r=k against H®: =k, (1D

A confidence set can be found by reversing the testing procedure and hence we choose the
time points such that the null hypothesis is not rejected. We are confronted with the problem
of determining critical point of LRT. For general discussions on the confidence sets using
LRT we refer to Siegmund (1988). As a numerical technique we use the bootstrap method to
find the critical points.

Two types of confidence set, one using T directly and the other using LRT procedure, can

be compared. It is known that MLE is not sufficient so that the inference based on 7 is not
efficient. It seems to be reasonable to consider any inference based on LRT. According to
Hinkley and Hinkley (1970) the power of LRT is superior to 7 and they also give power

comparisons through Monte Carlo simulations. In section 2 we consider MLE and its
asymptotic distributions as discussed by Hinkley (1970), Hinkley and Hinkley (1970) in a
sequence of normal and Bemoulli random variables, respectively. The likelthood based
confidence set will be discussed in Section 3 and we also give the parametric bootstrap
algorithm to find critical points of LRT. The proposed method is applied to a real data set.
Finally we summarize the results and also comment on further research topic.

2. Maximum Likelihood Estimation and Asymptotic Distribution

Let »y and ¢, be the common binomial probability before and after the unknown

change-point r, respectively. Then change-point model can be written as
br=py="=p~py and P, ='"=p1r=qy. Let O0=(z, 0y, a;) then log-likelihood
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function L(6) is given by

r r T T
L&) = 3x;log( fo )+ 2 nlog(l—pp)+ 2 x;log( zo )+ 2 nlog(l1—qyp)
1-25, 1 1—aqy t+1

= Zrlx,-{log( 12,0 ) —log( 13‘;0)}+2rn,-{log(l—bo)—log(l—ao)}
T qO T
+ {2 x log( 1_q0)+2ni108(1_00)} )

We note that L(6) can be written simply as

by )+ Slog( o
dy

L(6)= S :4+N ;log( 1—q,

i: )+Nlog(1—ay) , 2D
where

r T c T
ST:ZXf' S=ZX,~, erzni. N=2n,

and 4=pg—qj with pg= log( lfoﬁo ), qf=log( 13‘;0).

Note that when S, and S are given the log-likelihood is constant and hence independent of
nuisance parameter 4. Further we note that conditionally on S, S, is sufficient for 4

when r is fixed in which case exact inference about 4 is possible if conditioned on S.

Because r is unknown r itself becomes an extra parameter of interest and the conditional
inference is not so straightforward.

Here we temporarily assume p, and g, are known. Then the MLE of r is found to
" maximize the L(r), that is,
r= arg max (L(k) | k=1,2,-,T—1} .
Maximizing L(7) is reduced to maximizing the first two terms in the equation (2.1), ie.,

1—0y
1“(]0

Y, =S, 4+N ., log( ) .

We note that {Y,} defines two random walks W and W defined by

W= (0, Yt—l*Yl',“.l Yl—Yt)- W = (0, Yt+1—Yn'", YT—I_ Yr) .

Let Z; be defined by
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Z;= (Y ;=Y. i) 47!

1- _
= —X. Mt 1°g('r:§—3) a

= —Xrin1~ N0 s

where ©=1og( 1:2 3 )4 7!, Similarly

Zz= (Yerim Y1) 4 =y r+it 740,

Note that W and W represent the log-likelihood function of ¢ relative to the true value
for t<r and £ r, respectively. Apart from the factor 4 random walks W and W can be
written in terms of Z; and Z; as

T-z-1

r—1 , . . , ,
W= (0v21121+22'.“v22i)v W = (0121’ZI+ZZI‘..! 2 Zi)-

In the following few paragraphs we review the general theory of Hinkley (1970) for the
asymptotic distribution of 7. The random walks W and W are independent and all

properties of the likelihood are expressed in terms of W and W .let M and M be the
respective maxima of W and W . The events involving 7 can be expressed in terms of
events involving M and M . The MLE 7 corresponds to the position of the larger of the
two random walk maxima. If each maximum is zero then 7= r, and the event 7 =r+#k is
equivalent to M =Y;+-+Y,>0 and M >M. Similar result holds for the event
r=r—k.

Let  and I be the indices of the maxima of W and W defined respectively by

k
I = inflk| M=2Y;}, I=0if M=0
and

. . ko, . .
I = inf(k| M =2Y;}, I=0if M=0.

Then we can express the asymptotic distribution of 7 as follows.
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P(r=1) = P(M=0)P(M =0)
P(rt=rc+k) = PI' =k M >M, M >0), k=0,1,2,, (2.2)
Plr=r—k) = P(I=k,MD>M , M>0), k=0,1,2,-.

Hinkley (1970) obtained the approximate distribution of 7 in normal case. In the sequence
of Bernoulli variables Hinkley and Hinkley (1970) also obtained the asymptotic distribution of
T but it is not tractable in the general binomial case. So as an alternative to find the

asymptotic distribution in (2.2) we propose a bootstrap method. There are many authors using
bootstrap in change-point problems. Hinkley and Schechtman (1987) used bootstrap to find

conditional distribution of T given some ancillary statistics. This conditional approach stems

from the work of Cobb (1978) who suggested a conditional solution given ancillary statistics
in change-point problem of normal variables. On the other hand Dumbgen (1991), Boukai
(1993), and Antoch and Huskova (1995) suggested bootstrap in nonparametric procedures. We

assumed until now p, and ¢y are known and in the unknown case we substitute the MLE
5 0 and é\ 0.
We briefly review a parametric bootstrap procedure. Let f » belong to a parametric family

of probability density functions indexed by unknown parameter 7. The observed data
N=(X,,,X 1) is a sample from f, and let 8=g(7) be a real-valued parameter. When

7 is an MLE of 7 the MLE of 8 is 8=g( 7). Given n=(X,,,X 1) we generate a
bootstrap sample from f;- denoted by % °=(X],-~,X7), which is the so called
parametric bootstrap sample. A bootstrap version of ;7, denoted as ?)', is calculated from the
bootstrap sample % *=(X},-,X7%). The distribution of 8" is defined by
Gls)= P( 8"<s). We give a parametric bootstrap algorithm to find the asymptotic

distribution.

Bootstrap Algorithm for the Asymptotic Distribution of MLE

Step 1: Find MLE 7 from the given binomial data
Step 2: Estimate the MLE p, and ¢, using the given observations before and after 7,

respectively.



180 Kwang Mo Jeong

Step 3: Generate a bootstrap sample with the fixed sizes of trials #; and the MLEs ) 0
and 5 0-

Step 4: Find a bootstrap version of MLE ?‘, denoted as ?', from the bootstrap sample.
Step 5 Repeat Step 3 and Step 4 many times( B).

3. Likelihood Ratio Test and Confidence Set

As before p, and ¢ are assumed to be known and r is the only parameter of interest.

The LRT for testing the hypotheses (1.1) is defined by
LR = max L(t)—L(k) 3.1)

(%)

when LR® is large. The level a critical point c¢,° is determined to

and we reject H ék)

satisfy the equation
PUIRP<cPy=1~a.
By reversing the LRT critical region we find a 100(1 —a)% confidence set in which H ék) is

not rejected. The confidence sets directly based on the MLE are demonstrably inferior to
those obtained by, for example, that of LRT as commented by Hinkley (1970) and Siegmund
(1988).

Given S, and S, L(k) is constant and the problem is reduced to find a constant c.®
satisfying
P{maxL(B)<c.,® | S, S} =1—c.
The confidence set is most easily determined as the set of %2 for which

P(max L()< max L(t) g | St S)<l—a (3.2)

where max L(#) , denotes the maximum of L(# for the given data. Equivalently we
approximate the probability P(max L(H)> max L(#) 4| S4 S), which is called the observed

level at %, and we determine a 100(1 —a@)% confidence set consisting of all &2 with observed
levels greater than a.

The approximations to (3.2) was done by Smith (1975), and Raferty and Akman (1986) in
the Bayesian sense. Some numerical computaion is required in this case. According to the
general discussion of Siegmund (1988) for the exponential family random variables the
approximation is of the form
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P(maxL()za | S, S)~v'exp{—(a—L(k)} , (3.3)

where a—L(k) is assumed small compared to %, and v* is a distribution dependent
quantity. Here we require the conditional distribution of max L(¢#) given S, and S.

Worsley (1986) and Siegmund (1988) obtained the approximation (3.3) for the normal and
exponentially distributed random variables but it has not been studied in detail for other

distributions. In this paper we suggest a bootstrap method to find confidence sets of r. A
bootstrap algorithm finding confidence set can be written as follows.

Bootstrap Algorithm for Confidence Sets

Step 1: For each %~ we generate a bootstrap sample from the given binomial sample, where

the unknown p, and ¢ are substituted by the MLEs 5 o and @ o0, respectively.

Step 2: Compute the bootstrap version of LR ® defined in (3.1), denoted as LR’ using
the generated bootstrap sample.

Step 3: By repeating Step 1 and Step 2 many times( B) we determine the observed levels
using the bootstrap distribution of LR(#)*?, j=1,2, .-, B.

Step 4: Select every point ke {1,2,:-, T—1} whose observed level is greater than «.
This set is a 100(1 —a)% confidence region of r.

It is well-known that the likelihood of change-point problem is not smooth and so that the
asymptotic distribution theory of LRT does not hold. For the regular model with no
change-point Cox (1987) comments on confidence regions based on LRT statistic with

chi-square approximation as an alternative to bootstrap. Let 6=(¢,1), where ¢ is a

parameter of interest and A is a nuisance parameter. The 100(1—a@)% confidence set of ¢
is

(¢ 1 2{max L(u, D) -L(¢, A}<x5.)
with A ¢ denoting the MLE of A given ¢, where x?i,a is the upper a-percentile point of
chisquare distribution with degree of freedom d with d denoting the dimension of ¢. By
using the bootstrap distribution of z we can also derive confidence sets of r. In this case
the percentage point ¢, is defined by the largest integer satisfying

P(t—r<c)<e (2=0.01,0.05,0.10), P(7—r{c)<a (2=0.90,0.95,0.99).

For general discussions about bootstrap confidence set we refer to Efron (1985), and also for
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the confidence sets based on LRT, see Siegmund (1988).

Example: The Lindisfarne Scribes’ data which was given originally by Ross (1950) and
obtained from Pettitt (1979). The data refer to the number of occurrences of present indicative

third person singular endings "-s” and "- d” for different section of Lindisfarne. It is believed

different scribes used the endings "-s” and "- 9" in different proportions. The data are giveri
in Table 3.1.

Table 3.1: Lindisfarne Scribes’ data

Section(i) 1 2 3 4 5 6 7 8 9
No. of "-g" 12 26 31 17 7 28 34 10 29
No. of "-a" 9 10 13 4 2 24 11 1 8
Section(i) 10 11 12 13 14 15 16 17 18
No. of "-s" 30 16 17 24 14 5 17 17 16
No. of "~ a" 9 2 0 7 2 1 3 4 4

The plotting of likelihoof funcion is given in Figure 3.1
For this data the MLE of change—point is z=6 and Table 32 gives a bootstrap
distribution of 7 with B=5000 repetitions.

Table 3.2: Bootstrap Distribution of 7 (B=5,000)

t — T |5 -4 -3 2 -1 0 1 2 3 4 5 26

Probability  [.0066 .0114 0302 .0372 .0606 .6790 .0608 .0436 .0212 .0132 .0080 .0080

From Table 3.2 we may determine a equal-tail confidence interval of z. For example, 90%
interval is [3, 9] and 95% confidence interval is [2, 10]. Table 3.3 gives the observed
significance levels of LRT. From this table 90% confidence set is {6, 7, 8, 9, 10} which also
becomes the 95% confidence set of r. On the other hand 99% confidence set is {6, 7, 8, 9, 10,
11}. We note that a confidence set using LRT is shorter than equal-tail interval based on

MLE. This fact coincides with the fact that the inference based on LRT is more efficient than
that of MLE.
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Table 3.3: Observed Levels of LRT

k level(k) k level(k)
1 0.0041 10 0.1522
2 0.0081 11 0.0313
3 0.0023 12 0.0022
4 0.0062 13 0.0052
5 0.0012 14 0.0014
6 1.0000 15 0.0027
7 0.4061 16 0.0013
8 0.1532 17 0.0019
9 0.1058

-254 -252
1 I

-256
|

-258
1

TIME

Figure 3.1: Log-Likelihood Function of Lindisfarne Scribe Data
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4. Summary and Discussion

In a sequence of binomial variables we are concermed with the constancy of ’success’
probability p; over all time period. We first consider an MLE to estimate change-point ©

and discuss general random walks representations to find the asymptotic distribution of z.

Except for normal and Bernoulli cases the asymptotic distribution is not plausible. A
bootstrap method is suggested to approximate the asymptotic distribution of MLE. Another
interest of this paper is to find confidence sets of change-point. Standard asymptotic
distribution theory of LRT does not hold because the likelihood of change-point model is not
smooth. Similarly we may use the bootstrap distribution of LRT in determing confidence sets.
Two types of confidence sets, one using MLE and the other LRT, are considered and
explained through an example.

We have not discussed about the coverage error of bootstrap confidence set and remain it
as a further research topic.
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