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Simultaneous Estimation of the Birth and Death Rate
of the Linear Growth Birth and Death Process Based
on Discrete Time Observation?

ChangHyuck Oh2

Abstract

When the linear growth birth and death process observed at a set of equidistant
time points, McNeil and Weiss (1977) present a method for simultaneously estimating
the Malthusian parameter and the sum of the two parameters under very restricted
assumptions using a diffusion approximation. This article suggests a method, which
does not require the restrictions given by McNeil and Weiss, for estimating
simultaneously the Malthusian parameter and the sum of the two parameters.

1. Introduction

In the linear growth birth and death process with birth rate A and death rate u is
considered. When the process is observed only at discrete time points, very little is known
about the simultaneous estimation of A and g McNeil and Weiss (1977) present diffusion
approximation estimates for A—g and A+g, under the conditions that the time points for
observations are equally spaced, A—pu is close to zero, and both the population size and the
number of time points are large. We here give estimators for A—g and A+pu which do not
have the restrictions of McNeil and Weiss (1977). These estimators are derived using a
combination of a method based on moments, the method suggested by Choi and Severo
(1988), and Oh, Severo, and Slivka (1991). In section 2, main results are given. In section

3, an intuitive justification for the suggested estimators is given. In section 4, Monte Carlo
simulation results are presented to compare these various estimators.
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2. Estimators for the linear growth birth and death process

Let Y(t) denote the population size at time t of the linear growth process with birth rate :
and death rate #=0 which satisfy the infinitesimal conditions, for 7=1,2,-*,

Ah+o(h) if j=17+1

iuh+o(h) if j=1i—1
P(Y(t+)=Y()=i=
1—idA+phtolh) if j=1

o(h) if otherwise

where Y(0) = a.
Suppose that we observe the process only at a discrete set of time points resulting in a
sample of the form

{(ty, Y)=(0,2),(t, Y, (t,, Y)=(¢,a+ B—D)},
in which observation of the process is restricted to the finite number of times {; with
tp< 4, <+--<{t,, Y; is the population size at time ¢, and B and D are random variables

representing the number of births and deaths in [0, ], respectively, with a+B—D=0. In

what follows, we let A;=¢—1;_;.
Keiding (1975) proves that when A ;={"/n, i=1,-,n, the so-called equidistant sampling

scheme, the maximum likelihood estimator of the Malthusian parameter d=A—u is

ta YO+“'+Yn—] ). (1)

whose properties are investigated by Darwin (1956).
Under the equidistant sampling scheme, McNeil and Weiss (1977) introduce the following
simultaneous estimators for §=A—g and ¢= A+, respectively:

dypo—B=D (2)
(W E ¥,

and

» 2
. (Y=Y —Y(L) 8y
_1
aw_? 121 Y., : 3
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In deriving these estimators they used a diffusion process approximation, which assumed that
8=A—yu is close to zero, both the observed value of Y; and n are large, and the time points
are equally spaced.

Following Choi and Severo (1988) and Oh, Severo, and Slivka (1991), we present here two

estimators for & which can be used without the restrictions given above, namely,

3[.: [ B—D (4)
igl A t'( Yi+ Yi—l)/z
and
8= 8(3_10) (5)

;::1 Yol e®—1]

where & is the median of 8;=(logY,—logY,_))/A, i=1, n.

For ¢, we suggest an estimator using a method based on moments, namely,

3x{Y,— Y, jexp( §pa )}

median of Yiexp( 355 ) exp( 358 —1) if 8g*0
$r= (6)
) — . 2 s
median of —~Si izl it 8:=0

Y40,

Note that estimators in (4), (5) and (6) do not assume the equidistant sampling scheme, while
(1), (2) and (3) were developed under the equidistant sampling scheme.

3. Justification of the estimators

Suppose the process is observed continuously over the fixed time interval [0, #'] and y( ¢*)
> 0 where y( t") is the observed population size at #. Then this gives data of the form B
=b D=d Z=2z, i=1,,b+d, zpa >t — 2 brd z;

and N;_;=#n;_0, j=1,,b+d+1 where Z; is the time between the (i-1)-st and i-th
transitions, i.e. births or deaths, and N; is the population size just after the j-th transition.
Darwin (1956) showed that the log likelihood is given by
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b+d
log L(A, 1) = log ( l;[lni-l) +blog A—dlog u— (A+p)s

s b+d . b+d
s= fo W Hdt= gln,-_lzﬁnbﬂ,(t - iglz;) D

where y(t) is the observed value of Y(t) for 0<¢<¢. The maximum likelihood estimates of
A and p are then given by

Ac=-7 and pc=-_ (8)

When y( ) = 0, equation (8 is still valid. Thus for either y( ) > 0 or y(#) = 0, the

maximum likelihood estimates of d=A—u and ¢=A+pu are given by
Se=2=2 and P.= btd
S S
which is a result of Darwin (1956).
Under the discrete sampling scheme, b - d is known but the denominator s is not known.
To approximate s, we follow the method of Choi and Severo (1988) and Oh, Severo, and
Slivka (1991). We can rewrite (7) as

”

$=.2Ai

=1

t;
where A;= ft_ w(Hdt for i=1,,n. 9

Since A; is not known in this sampling scheme, we employ its trapezoidal approximation
A {y;-,+v)/2. This gives the estimator 87, namely (4).
Another method by which A; can be approximated is to replace Y(t) in (9) by its

conditional expectation given Y;_,=¥;-;, namely
E{Y(t)l Y,-_1=y,-_1}=yi_1exp{8(t—t;_1)} (10)

for t;_; < t < t; ( See e.g., Chiang (1980, p. 275)). Since & is not known, we estimate it
by &, the solution of the equation
yi=yi-1exp{0a } (11)
If v;-1>0, then (11) gives

0;=(logy;—logy;_)/4; .
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Let & be the median of &'s.
Replacing & in (10) by ¢ gives
yiopexp{8(t—t,_)}, i <t<t
so that A; may be approximated by
ft:yi—leXp{ 8i(t—t;_)}dt=v;_1exp(8a,;~1)/8 (12)

If ¥;,.170 and y,=0, then there is no solution for & in (11). In this case we approximate
A; in (9) by its trapezoidal approximation, namely,

Awia/2 (13)
Thus from (12) and (13), we have the corresponding estimator &g of & as in (5).
It should be noted that all denominators of 8;, 8 and & approximate s.
Now we estimate ¢. Two cases will be considered. In the case in which 35#0, we use
the expression for the variance of Y, given Y;_;=y;_; valid for 6*0. In the case in which
8r=0, we use the corresponding variance expression valid for 8=0.

It is well known that for =0, the variance of Y; given Y;_;=;-1>0 is given by
Var(Y) Yio=y))= yi—l% exp(8a ) exp(da ) —1} (14)

for i=1,,n (see, eg., Chiang (1980, p. 275)). Therefore when 8r*(0, we replace the
left-hand-side of (14) by
{yvi—E a-( YJY;‘—1=J’5—1)}2={y:'_yi—leXD( SEAi)}Z

and replace & in the right-hand-side of (14) by &% to get

{yi—yi-1exp( §EA;)}2
=yi—1_2%£‘ exp( 8z0 ) exp( 8ga,)—1) (15)

The solution of (15) for ¢ is given by

SE{yi_yi—leXD( gEA.')}z
vi-1exp( 3EA;){€XD( 3EA,-)—1}

(16)

Then an estimate of ¢ is given by
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gE{yi“yi—lexD( 35A,~)}2
yiexp( dpb ){exp( dphn ) —1)

median of ¢Y))

Next we consider the case 0g=0. When 8=0, the expectation of Y; given Y, ;=y, is
E(Y{Y._1=»_1)=yia
and the variance of Y; given Y;_,=¥;_, is given by
Var(Y{Y, 1=vi-))=¢v;-10; (18)
for i=1,-, n (see, e.g., Chiang (1980, p. 276)). 'We replace the left-hand-side of (18) by
(i—E s=o(Y}Yio1 = 3,0} = (3i—=yi-1)?

to get the equation

(yi—yi-)?=¢yi1B; (19)
The solution of (19) for ¢ is given by
—v. )2
—————(y;i_f Xf) : (20)
Then an estimate of ¢ is given by
median of _____(y;i——,le:)z

4. Monte Carlo experiments

In order to compare the performance of various estimators for & and ¢, simulation studies

with 2000 replications have been conducted for & = 0.05, ¢ = 006, £ = 100, @ = 5 and n =
10, 20, 25, 50, and 100 under the equidistant sampling scheme. Averages and square roots of
mean square errors of various estimators for & and ¢ are obtained. The results are
summarized in Table 1. For each n, the first row is for empirical means of estimators and
the second row is for square roots of empirical mean square errors of estimators.

Under the nonequidistant sampling scheme in which ¢; is determined by

t.~=% logl 1+-L{exp(s¢/3)-1)] @D

for 7=1,---,n Simulation studies with 2000 replications also have been conducted for & =

005 ¢ =006 ¢ =100, a =5 and n = 10, 20, 25, 50, and 100. The result is summarized in
Table 2.
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The sampling scheme (21) is an approximate optimal sampling scheme for the linear growth
pure birth process given by Becker and Kersting (1983). Since the linear growth birth and

death process Y(t) with & > O behaves like a linear growth pure birth process with birth
rate &, at least in mean, the sampling scheme (21) intuitively might be applicable to the
linear growth birth and death process.

Table 1. Empirical means and square roots of empirical mean square errors, in the first and

second row for each n, respectively, of various estimators of 2000 replications for & = 0.05, ¢

=0.06, ' = 100, and a = 5 under the equidistant sampling scheme.

dc 8e __ dw 8p $c 5 Pw
10 00495 0049 00388 00496 00597 0.0693 0.0254
00025 00056 00112 00057 00024 00314 0.0368
20 00496 00495 0.0440 00494 00597 0.0594 0.0373
00026 0.0042 00064 0.0043 00025 00219 0.0257
25 00496 00496 00450 00495 00597 0.0595 0.0410
0.0025 00034 00056 00036 00024 00192 0.0220
50 00496 00495 00473 00495 00597 0.059% 0.0468
0.0025 00028 00035 00029 00024 00138 0.0164
100 00496 00496 00483 0.049 00598 0.0597 0.0528
0.0024 0.0025 00028 00025 00024 00102 00122

=

Table 2. Empirical means and square root of empirical mean square errors, in the first and
second row for each n, respectively, of various estimators of 2000 replications for d=00m ¢

= 006, " = 100, and a = 5 under the nonequidistant sampling scheme (21).

n 30 35 ac $E

10 00496 0.0455 0.0597 0.0616
0.0025 0.0055 0.0024 0.0316

20 0.0497 0.0496 0.0598 0.0604
0.0025 0.0039 0.0025 0.0211

25 00497 0.0496 00597 0.0595
0.0025 0.0034 0.0023 0.0204

50 0.0497 0.0497 0.0598 0.0596
0.0024 0.0028 0.0023 0.0132

100 0.0497 0.0498 0.0598 0.0597
0.0025 0.0026 0.0024 0.0104
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In both Table 1 and Table 2, 35 compares favorably with 30 For all cases empirical
means of 8W are smaller than those of gc and increase as n increases. The empirical
means of 85 are close to the true value ¢ = 06. As expected, aw is not a good

competitor of 3 E
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