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Bayesian Estimation Procedure
in Multiprocess Non-Linear
Dynamic Normal Modell)

Joong Kweon Sohn?) and Sang Gil Kang3

Abstract

In this paper we consider the multiprocess dynamic normal model with parameters
having a time dependent non-linear structure. We develop and study the recursive
estimation procedure for the proposed model with normality assumption. It turns out
that the proposed model has nice properties such as insensitivity to outliers and quick
reaction to abrupt changes of pattern.

1. Introduction

Dynamic systems have been used by communications and control engineers to the state of
a system as it evolves through time since the works of Kalman(1960). Kalman(1960)
developed an recursive estimation procedure for the state variables of a linear dynamic
system. Ho and Lee(1964) studied the dynamic linear model with Bayesian framework. Duncan
and Horn(1972) introduced the Kalman filter by relating the dynamic linear model to random
B regression theory using the time varying random parameters as state variables. Harrison
and Stevens(1976) summarized the foundations of Bayesian forecasting as the parametric or
statespace model, the probabilistic information on model parameters, the sequential model
definition which describes the dynamic behavior of model parameters and some uncertainty in
choosing the underlying model from a number of discrete alternatives. West, Harrison, and
Migon(1985) developed the dynamic generalized linear model for application in non-linear,
non-normal time series and regression problems. Masrielez and Martin(1977) developed robust
Bayesian estimates for a state space model where either the state noise is Gaussian and the
observation noise is heavy-tailed, or vice versa. West(1981) developed an approximation to the
sequential updating of the distribution of location parameters of a linear time series model. He
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examined the behavior of the resulting non-linear filter algorithm. Kitagawa(1987) developed a
non-normal state space model for non-stationary time series, where the observation and
systemn noise distributions are non-normal.

The multiprocess dynamic linear model was developed by Harrison and Stevens (1971, 1976)
for the time series that contain outliers and are subject to abrupt changes in pattern. Smith
and West(1983) and Smith, Gordon, Knapp and Trimble(1983) described a related monitoring
procedure for detecting various forms of kidney failure in renal transplant patients. West(1986)
introduced a method of monitoring the predictive performance of a class of Bayesian models.
West and Harrison(1986) studied the method of model monitoring and adapting to structural
changes in the time series. Bolstad(1986) presented Harrison-Stevens forecasting algorithm
and the multiprocess dynamic linear model. Bolstad(1988) developed the multiprocess dynamic
generalized linear model. Bolstad(1995) developed the multiprocess dynamic poisson model for
estimating and forecasting a poisson random variable with a time-varying parameter.
Whittaker and Frithwirth-Schnatter(1994) used to a triangular multiprocess Kalman filter for
detecting bacteriological growth in routine monitoring of feedstuff.

In this paper, we develop multiprocess dynamic normal models with non-linear structure by
incorporating the perturbation index variable which determines the perturbation distribution. In
Section 2, we develop the recursive estimation for the multiprocess dynamic normal model
with parameter non-linearities. Here the model is assumed to follow normal distribution. In
Section 3, we study the proposed recursive estimations for the generalized exponential growth
model by using Monte Carlo simulation study.

2. Recursive Estimation of Multiprocess Non-linear
Dynamic Normal Model

In this Section, we are concerned with the multiprocess non-linear dynamic normal models.
Non-linear dynamic models can be written in the following twoforms:

Observation equation : Y,=F/(8,) +w;,
and
Evolution equation : B:=8:/(B-1) + 7y

where F,=(-) is a known non-linear regression function, g,=(-) is a known non-linear

vector evolution function and w, and », are error terms. In these models, we encounter
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difficulties with determining the posterior distribution of B, given Y, since F«{-) and/or
g +) are non-linear function of B, and B, ;, respectively. Implementation of this analysis

requires numerical integration to well approximate mathematically defined integrals, and so is
in fact impossible to do it analytically. Thus whatever the particular structure of parameter
non-linearities is in application, the base dynamic linear model analysis must be extended to
cater for it. Therefore we use some approximation techniques. We use the first order Taylor
series approximation technique.

The multiprocess dynamic model can be regarded as the dynamic model in that the
parameter vector subject to perturbation. However, in the multiprocess dynamic model the
distribution of the perturbation depends on the perturbation index random variable at that
time. The sequences of perturbation index variables are independent of each other and each
can be considered to be the outcome of a single multinomial trial with known prior
probabilities. The prior probabilities do not have to remain constant over time. This allows
prior knowledge by the forecaster into the model and hence the forecasting system is very
flexible. Thus multiprocess non-linear dynamic model can be expressed as follows.

Let I; be the perturbation index variable at time ¢

PUL,=)=2, for j=1,2,.k .

When I,=j;,
Bi=gLB:1)+7,
where g/ ) is a known non-linear vector evolution function and 7, is the perturbation

vector, which is normally distributed with mean vector 0 and known variance-covariance
matrix R”. The variance-covariance matrix depends on the perturbation index variable I,=j

and can be changed over time. The observation equation is given by
Y= Ft(Bl) +w, ,

where F,(-) is a known non-linear regression function mapping the #n-vector A; to the real
line and observation errors and w, are independent and norrnally distributed with mean 0 and

variance W, .

Various linearization techniques have been developed for dynamic non-linear models, all
being based on the use of linear approximations to non-linearities, The most straightforward
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and easily interpreted approach is the first order Taylor series approximations technique. This
requires the assumptions that both non-linear regression function F,-) and non-linear

evolution function g, -) be differentiable functions of their vector arguments. A Taylor series

expansion of the evolution function and observation equation for multiprocess dynamic model
are as follows.

At time ¢—1, the posterior distribution of A£,.; given [,, and Y, , is normally

distributed with mean {2, and variance-covariance matrix V{?;, that is,

(Bi-M oy =1, Y,_1)~N(m,(21, V$21 .

A Taylor series expansion of the evolution functions about the estimate m (2, of 8,

gives
8Bi-) =8dmP2)+GLB - —mP)+R (B —m 2,

where R, (8.-;—m ) is a remainder term which is a function of quadratic and higher order
terms of (B ,-l—m,(fl) and G, is the known #nX#» matrix derivative of the evolution matrix

evaluated at the estimate mf?l,

_[ 22dB8:)
G'_[ 3B -1 Bra=m -

Assuming that terms other than the linear term are negligible, the linearized expression of

the evolution equation becomes

g,(m§91)+G,(ﬂ,-, _m£21)+rt

&

B
2.1

= h+Ghi-trs,
where h,=g{m2)—Gm?, is also known.

Similarly the non-linear regression function is also linearized about the expected value
a;= h,+G,m$21 fOI' ﬂt,

F(B) = Flap+H/ (B:i—a) +R2(Bt—at)o

where Ry(8;—a,) is a remainder term which is a function of quadratic and higher order terms



Multiprocess Non-Linear Dynamic Normal Model 159

of (B;—ay) and H, is the known n-vector derivative of F, evaluated at the prior mean a,,

oF (B8

H‘=[ ——5—8—;— Bi=a: -

Assuming the linear term dominates the expansion, the non-linear regression function is

linearized as

Y = Ft(ﬂt) +w,
fitH/ (Bi—a) +w,

(2.2)

A

where a,=h,+Gm®, and f,=F/(a,). Thus the model with (2.1) and (2.2) as observation

equation and evolution equation, respectively, is multiprocess dynamic linear model.

2.1 Recursive Estimation

Assume that at ¢t=0 the initial prior is the usual normal form

(3o| Yo) ~ N(mo. Vo).

where mean vector my and variance-covariance matrix V; are known at {. k& posterior
distributions of B, given [I,.,=7 and Y, are known at time ¢—1. Each posterior

distribution has the usual conjugate normal form. Thus posterior distribution of £,-; given
I,.,=i and Y, is nommally distributed with mean vector m?, and variance-covariance

matrix V{2, that is,

(Biallim=4,¥,2)) ~ Nom 2, V2). 2.3)

The notation Y, ,=y,;,¥:-3,,¥ denotes all observations up to and including y,_,. Also
at time f#—1 the posterior probability of perturbation index variable, ¢ (% =P([,.;=i|Y,.)), is
known. Evolving to time ¢, 8, and Y, depend on the perturbation index variable 7, and I,

(1) Evolution Step

In this step, each of these #k distributions is calculated to time ¢ conditional on I;=j for

J=1,2,, k.
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For each [I,.,={¢ and I,=j, we now derive the prior distribution, one-step forecast
distribution and joint distribution at time £ The linear normal evolution equation (2.1) coupled
with posterior distribution (2.3) leads directly to the prior distribution of S, given
I,.,=i1=j and Y,_|. Clearly the prior distribution B, given I,.,=1{,I,=j, and Y, is
normally distributed since it is a linear function of B,-; and r», which are independent and

normally distributed. The mean vector and variance-covariance matrix are

(”) —EI By ’It 1= 7, t—-l]
= E{ h+Gtﬁtl+rt|111—11 7, x—1]
=h+Gm 2,

and
CH? =Vad B My =i1=7,Y ]

= Vﬂ?’{ ht+Gtﬂt—l+rl |]1—1= i, I=17, Yt—l]
=Gy t(—,)lGl'+Rt(})’
respectively. Therefore the prior distribution of B, given [,_;=1¢,I,=j and Y,_; is normally

distributed with mean vector #/?=h+Gm{?, and variance- covariance matrix

CiP=G VG +RP, that s,

BM y=i,1=7,Y ) ~ Nnl"?, CH?), (2.4)

By using prior distribution(2.4) together with the observation equation (2.2), the one-step
forecast distribution of y, given I, ;=1i,I,=j and Y, follows a normal distribution with the

mean and variance

E[ A |It—l =i 1=j, Yt—l] = E[ Ft(lgt) +w, IIt—l =1 1~=7 Yt-l]
= E fi+H/(Bi—a)tw =i 1=}, Yl
= ft"'Hz'(nt(i'))_at)

and
Vard y: '11-1 =1 1=7 Y:—]] = Varl F{B)+w, |Ir—| =1, 1=, Yt—l]

Vel fi+H/(Bi—a)+w, II:—l =1 1=], Yt—l]
Ht'ct(mHt'*' W.
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respectively. Therefore the one-step forecast distribution of y, given I,_,=i,I,=;j and Y,

is normally distributed with mean f,+H, (2" —a) and variance H,;CY”H, , that is,

(¥, Hey=1,1=4, Yx-l) ~ N(fz+Ht’(nt(i'ﬁ _ax),Hr’Ct(i'ﬂHt'i’ wo. (2.5)

By using prior distribution(2.4) and one-step forecast distribution(2.5), 8, and y, follow a
normal distribution with mean vector (n?,f,+H,(n "’ —a))’ and variance - covariance

matrix

C,(i' ;)‘ Ct(.i. ) H,
Ht’ C[(Ll) Ht' Cg(“)Ht'f‘ W, !

that is, the joint distribution of B, and y, given I,.,=1¢ [,=j and Y, is

(B‘ =i I=5Y ) ~ N nt? [ G G, . (26)
Y fr+H1’(nt(z'D —a) HI’CI(")) H,'C,(";)H,‘FVV,

Note that the covariance of B, and ¥; can be obtained as

Co[ B, ¥: |It—]‘= 1, 1=, Yl-—l] = Coy[ B sfl+Ht'(Bt—at) 111-1:‘ 1, 1I=7j, Yt—l]
= C/H,

(2) Updating Step

When 1y, is observed, the prior distribution of B, in the evolution step is updated to its

posterior distribution. We call this the updating step. Now it needs to compute the posterior
mean vectors and variance-covariance matrices of kxk posterior distributions of 8, given the

combination of /,_;=1{ and I,=j.

By using standard normal theory for joint distribution of B, and y, in evolution step, the

conditional distribution of B, given ¥, can be obtained as

(Bt IIt—l =i1=7v, Yt—l)‘:(Bt |11—1 =1{,1=7, Yx).

Also the mean vector and variance-covariance matrix are
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m(*? =E B \l,-y=1,1=3 Y]
="+ CUPH(H, CEPH A+ W) "y~ (f+ HY (n"? —a))))
and
VED =Varl B l;-y=i 1=}, Y]
=CH—CY P H(H, CHH + W) T H/ C,
respectively. Therefore the posterior distributions of B, given I,_;=i, I,=j and Y, is

normally distributed with mean vector

mt(i") = ”t(i")""ct(i'nH:(Ht’ l(i'l)Ht'{’ WD _l(yt— (ft""H:,(nt(i'ﬂ -a)))

and variance—covariance matrix

ViD= CEA—CEPH(F, C " H,+ W) T'H/C.
That is, .
Bl Iy=i,1,=5,Y) ~ Nom?, VP), 2.7

To carry out the recursive estimation further, we need to derive the posterior probabilities
of the perturbation indices given the present observation. This probability is called the
posterior index probability. By using the Bayes theorem, we have

PO =PI, =i 1=j 1Y)
P(y: Jpy=i1,=4 Y, )PL,=j|l,.;=4 Y, )P, =iY,,)
Py |Y,- 1)
— g @ PO My =8 1=7, Y,y
£t P(.Vl IY:—I)

for i=1,--,k and j=1,--,k The quantity P(y,1Y,-;) is a normalizing constant. Hence the
PY? are all completely determined. If our interest is not the forecast itself but the change of

pattern, these probabilities are useful in detecting the change of pattern .
(3) Collapsing Step

Estimation of J; is based on the unconditional kX% component mixtures that average

posterior distribution (2.7) with respect to the posterior index probabilities P{*?. Thus

ﬁ Btltl"'zlt-— 1Y)

P(Bt | Yt = \
Bl y=i,1=j, YP\"?,

1

HM» iMe
iM»Tu

1 l
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This completes essentially the evolution and updating steps at time £ To proceed to time

t+1, however, we need to remove the dependence of the joint posterior P(8,|Y) on kxk
possible combination of [I,_,=i and [,=j for i=1,---,k and j=1,-,k If we evaluate
P(B, 1Y) to time t+1 directly, the mixture will expand to k¥ components for B,
dependently on all possible combinations of 7,.,=/ I,=j and I,_;=i. However, the principle

that the effect of different models at time f—1 are negligible for time ¢+1 is applied for
approximating such mixtures. After collapsing the posterior distribution, mean vector and
variance-covariance matrix of g, are obtained as follows.

By using the posterior index probabilities at time ¢ , the posterior distribution of
(B8, ;=74 Y) is represented as a k component mixture of (B, |[,.;=1,1=j,Y). Thus the

posterior distribution of 8, given I,=j and Y, is

KB L=5 YD = $ AB =i t,=s, vy - Dlem L 11D

= @) P AR =i =1, Y,

where ¢ = f)l PY?,
£

By using the method of approximation of mixture, the mean vector and variance-
covariance matrix are

m® =EB, | I,=7,Y)= él(qtm) P P

and
Vt(i’ = Var(B | I,- i, Y)= gl (Gtm) _lpt(i'ﬁ[ Vt(i'n + (mt(i'» ’_mlm) (mt(i") "mt(n)‘] ,

respectively. Therefore the posterior distributions of B, given I;=;j and Y, is normally
distributed with mean vector

mt(l) — ﬁl(qt(l)) _lei")m,(i") (2.8)
=
and variance-covariance matrix

vo = gl( 2 TP VD 4 (D — g DY D — g Y] (2.9)
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respectively. That is,
(B | Li=5, Y)~Nm?, v?), (2.10)

At this point, we complete the recursive estimation procedure up to time ¢ and we are
ready to repeat the process at time ¢+1 when the next observation becomes y..; available.
Now we want to forecast the values of B,.; and y,,; if the further observation is not

available, i=1,2,:--. Here we restrict ourselves to one-step forecast.

2.2 Forecast Distributions

To forecast the values of B4, and y.4,, first we need to derive the forecast distribution of

Bi+1 and y.4. It can be easily seen.

The forecast distribution of B+, given I,=¢, I,,,=j and 'Y, is normally distributed. Also

the mean vector and variance-covariance matrix of £, are

nt(i{) =K B+ | L=11,,=/, Yl =h,+1+G,+1m,(')

and
Clid=Ved Bl =i, 1=, Y) =G VPG +R),
where
hivy =& t+1(m1(‘)) -G 1+1mr(’)
and
G = [ E%(’@ Br=mi»
t
respectively.

Therefore the forecast distribution of g+, given [I,=4, I,.;=j and Y, is normally
distributed with mean vector #%)=h,,+G,..m® and variance-covariance matrix

Cfif) =G Vt(’)GH-l’ +Rt(!21: that is,

(Bt+1 | I,= t,1,,,=7, Yp) ~ N (nfi{’. C;if)) (2.11)

By using forecast distribution(2.11) and the observation equation(2.2), the distribution of .,

given I;=4¢, I,,,=j and Y, is normally distributed. Also its mean is



Multiprocess Non-Linear Dynamic Normal Model 165

El Y11 | L=14¢1,,=], Y] = fl+l+Ht+l’(nt(${)—at+l).

where
a4y =ht+l+Gt+lmt(l)
and
OF 111(B1+1)

H;y = 3B 11 Ber=a141+

The variance of ¥,4 is

Var Y+ | I,= 4, 1=17, Yr] = Hr+1’cz(if)Hr+1 + Wiy,

Therefore the distribution of .., given I,=14, [,,,=j and Y, is normally distributed with

mean fpq +H (n%P—a,.)) and variance H ., C {:?H 1o, + W,,,. That is,

(J’z+1 | I,= t,1=1, Y) ~ N (fr+1 +Ht+1'(" ff;:f)—a r+1),H:+x’CEif)Hr+1 + Wr+1)-

The marginal predictive distribution for y,.; is the mixture of the #kx%& components

Py | Ii=1,1,4,=7j,Y) with respect to posterior index probabilities. Thus the distributions of

¥+, given Y, is given by

P(.Vr+1 | I,= i.Ir+1=j, Y,)P(I,=i | YI)F)(IH—l:j | Ii=1, Yz)

Py t+1 | I,=1, 1= Yr)az(’)ﬂ' 521

Pyl Y) = gx gl
£ &
>, 2,

1

Therefore the unconditional forecast distribution of y,., given I,=i, I,,,=jand Y, is

Ay t+1 | Y)= gl glat(’)ﬂ f?_lP(y t+1 | ;= 6,1=], Y).

3. Monte Carlo Simulation Study

In this section, we study the performances of the Bayesian estimation proposed in Section 2
via Monte Carlo simulation for the multiprocess non-linear dynamic normal model.

We consider a member of the generalized exponential growth models by Gamerman and
Migon(1991). Let y,t=1,2,--,», be a time series of interest. The model is normally

distribution with mean g, and variance K(u)¢® that is,
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(e | )~N,, K(p)o)

where B,= g/ and non-linear equations are

B: =B triatwy
Ve =@ v twg
¢ = twg.

B, is the level, y, is the growth in the level and ¢, is the damping factor for this model.

The non-linearity in the model is due to multiplicative effect of ¢, The simulation study was

carried out with the following example on an artificially generated time series. The time series
consists of 80 normally distributed random variables and are the following change pattern.
The time series data start with no change with an outlier of at the 12th observation. At the
21st observation, the growth change starts and continues up to the 30th observation. From
the 31th observation to the 50th observation there is no change. From the 51th observation,
the damping factor change starts and continues up to the 60th observation. At the 61th

observation, level change starts and continues up to the 80th observation with an outlier at
the 72th observation. ‘

The forecast and the actual observations are shown in Figure 3.1 and the forecast errors
are shown in Figure 3.2. From these figures, it can be summarized as follows:

309

254
200

158 |

Farecast

100 F

5@

Figure 3.1 Observed( °) and Forecast( *) Value
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150

Farecast Error

Figure 3.2 Forecast Error

(i) The developed model gives good estimates by using past data as well as present data
when the time series is in a stable pattern.

(ii) The developed model is not sensitive to an outlier.

(iii) The developed model reacts quickly when a change occurs. But when a change occurs,
the forecast error is slightly increasing.
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