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Bootstrap Confidence Intervals for Reliability
in 1-way ANOVA Random Model

Dal Ho Kim!) and Jang Sik Cho?

Abstract

We construct bootstrap confidence intervals for reliability, R= P{X> Y}, where X
and Y are independent normal random variables. One way ANOVA random effect
models are assumed for the populations of X and Y, where standard deviations o,
and 0, are unequal. We investigate the accuracy of the proposed bootstrap confidence

intervals and classical confidence interval via Monte Carlo simulation. Results indicate
that proposed bootstrap confidence intervals work better than classical confidence

interval for small sample and/or large value of R.

1. Introduction

One way random effect model has been widely used in a variety of areas when the number
of batches in a population is large. In statistical quality control and reliability analysis
sometimes one is interested in P{X)> Y}. For example, an engineer would like to compare
failure times (X and Y) of automobile batteries of types A and B, respectively. He
randomly selects 7, batteries from each of /, batches of type A and n, from each of /,
batches of type B batteries. Then he tests the batteries under a specific temperature and
records failure times. The aim of the engineer is to find a confidence interval for the
reliability, R=P{X)> Y}.

Reisser and Guttman(1986) obtained approximate confidence interval for R in stress
strength model with normal distribution. Guttman, Johnson, Bhattacharyya and Reisser(1988)
found approximate confidence interval for R in stress strength model with explanatory

variables. Aminzadeh(1991) derived approximate confidence interval based on the asymptotic
normal distribution for the reliability under random effect model. Since the true distribution of
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the estimator for R is often skewed and biased for a small sample and/or large value of R,
the interval based on the asymptotic normal distribution may deteriorate the accuracy. We
will use the bootstrap method to rectify these problems. Efron(1979) initially introduced the
bootstrap method to assign the accuracy for an estimator. To construct approximate
confidence interval for an estimator, Efron(1981, 1982, 1987) and Hall(1988) proposed the

percentile method, the bias correct method( BC method), the bias correct acceleration method

( BCa method), and the percentile- ¢ method, etc.

In this paper, we consider the problem of derivation of confidence intervals for reliability
under 1-way random effect ANOVA. Specifically, we derive a large sample property for the
bootstrap estimator of R and propose approximate bootstrap confidence intervals for R based
on percentile, BC, BCa and percentile- ¢ methods. Also we investigate the accuracy of the

proposed bootstrap confidence intervals and confidence interval based on Aminzadeh(1991)'s
method via Monte Carlo simulation. In particular, we observe the accuracy of these intervals

for small sample and/or large value of R,

2. Consistency for Bootstrap Estimator

We assume that #; measurements from each of [/, batches of population 1 and 7y from
each of /; batches of population 2 are selected. Let u, and u, are overall means for

populations 1 and 2. And let A and B are batch effects for populations 1 and 2. Then

1-way random effect models for X and Y are defined as follows:
Xii = ﬂx+Aj+eii; z'=1,2,"',n1, j=1,2,“‘,ll 2.1

and
Yar = ﬂy+Br+5qm q=1,2,“',n2, 7’=1,2,"',12, 2.2)

where A;, e, B,, &,, are stochastically independent normal random variables with means zero
and standard deviations, 04, 0., 0B, 0., respectively.

From (2.1) and (2.2) we can see that X; and Y, have normal distribution with means z,,
4, and variances a,2= 0,42+ 0,,2, ay2= 052+ 052, respectively. Then the reliab‘ility is
computed as R= ((4), where @ denotes the cumulative distribution function of a standard

. Hx—Hy
normal random variable and 0= ——5—= . Let X = (X;;,Xyp,.X,;) and Y =
V o2+ o)
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(Yy. Y., Y,a.) be vectors of measurements for X and Y, respectively. And let

N,=n,l; and N,= nyl,. By Aminzadeh(1991), the estimator R of R is given by

~ X - 7
R=0(8)= 0| =—== (2.3)
/ ’7+ E;Z
v _ 1 m — —_L_ n, b —~ (n;—1) Sez+ SAZ
where X = N, EIEIX,-,', Y = N, g 2=‘. O = 7 and
_ 2 2
E;Z= (#,=1) Se + Ss . Note that S2,S% and S%.S% are mean squares within and

ny

between batches for populations 1 and 2, respectively.

Related to the Aminzadeh’s procedure is the bootstrap procedure which is a resampling
scheme that one attempts to learn the sampling properties of a statistic by recomputing its
value on the basis of a new sample realized from the original one. The bootstrap procedure
provides confidence interval estimates by using the plug-in principle for R. The bootstrap

procedure for the construction of bootstrap estimators for R can be described as follows:

(1) Compute the plug-in estimates of u,, /1,,,0‘3 and of, given by —X__., Y ,
n; 11 ny

Nl 2 Z(X X )2 and 2 Z(qu_ Y )2 from _X and _Z

i=]j=1] g=1lr=1

respectively.
(2) Construct the sampling distribution £ and C(from X and Y) based on X,

Y , S% and S respectively. That is, £~ N( X ,SY and G~ MY _,SY.

(3) Generate B random samples of size N, and N, from fixed F and G, respectively.
The corresponding samples called the bootstrap samples are denoted by
X —(Xn, 1 SECTN ':,/,) and Xb=(YIf, Y, Y',,zzz) b=1,2,--,B. As the bootstrap

. b b )
samples for any b, we use X' and Y instead of X" and ¥, respectively.

(4) Compute R"= ( g'b), where

b X" 7 * b 1] & a A
AK — .. .. = * - _d_ ‘b x> —_ b
6 \/ Si‘b'f' Sf,’b ’ X Nl EIJEIXU ’ Y qgl ’gl Yl‘?”
- * * e’ 12 x> *
s2= z P (XP— X and 0= 3 T(vi- W We call

fa=] jux] Nz g=1r=1
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X" 7 s 2™ and B by bootstrap estimators for Uy ty, 02, 0> and R,

L]

respectively. As the bootstrap estimators for any b, we use —X“', 7” , Sﬁ', Sit and

*b

. <5 b < »h *b .
R’ instead of X7 Y. S §¥ and ﬁ‘b, respectively.

The following theorem is related to the weak law of large numbers and the convergence in

distribution of bootstrap estimator £ = &( &°).

Theorem. For given X and _Y from the population 1 and 2, suppose that X and
Y are the bootstrap samples of sizes N, and N, from the sample distribution function

F and G. Then the bootstrap estimator F is a consistent estimator of K.

Proof. For arbitrary positive &,

I
Al X=X |29« 2L X

H E( 7{‘..‘—22)21 X 1]

€
_ ES)
- Ni&
=(—1(V;;7}))2i — 0, as N} — oo,
Also,
RI -5t 2g) < &80

_ _HEI( si‘—zsi)zl X1

&
- 2N1—1

_ 4
= M B"g\]/ﬁ g —0,as N, — 0.
1
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Therefore, 7”' and Si' converge in probability to p, and oi, respectively. Similarly,

-

Y and Si' converge in probability to g, and o‘i, respectively. Hence,

=7 * x> *

o X - Y,
V S2+ 82

is a consistent estimator of &. Since @ is continuous function, R

is a consistent estimator of K.

Note that the asymptotic distribution of R" and R are the same under the assumptions of

theorem.

3. Bootstrap Confidence Intervals for Reliability

In this section we construct approximate bootstrap confidence intervals for R. All
confidence intervals are two-sided and equal-tailed with confidence level 100(1 —2a)%.
Before deriving bootstrap confidence intervals, we consider approximate confidence interval

based on the normal approximation. Aminzadeh(1991) proved that & has asymptotic normal

a+a | &

-1
distribution with mean & and variance 652=( K + m) , where

ke (m=Da+d | (m-Ddsta, ,_ (d+d)’
N N, ’ flate )’
e (B+D(h =DV, . (kg DX h—1)N, P S
Ny(ky+n Yo+ (L= X ~1)° Nyl +m )+ (1—m) (=1 7 &
-1
ky= %. The asymptotic variance of & is estimated by 5}= Ei}-; ?y + ;‘2) , Where

_ 2 Q2
R and @ are computed by using ?, E“Z a=_§quT~9‘)_’ £=—(——Sihzis),
2 1Q2_ 2 1Q2
E=(SA—/nSle——1—)— and k}=ﬁn§;——l)— instead of 0%,0%,0%4,023,k1 and &, respectively.

Hence, 100(1—2a)% confidence interval for R is given by
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[o(3+29- ), o(3+z""2. )] , 3.1

(a)

where 2z is the 100 - @ percentile of standard normal distribution.

3.1. Percentile method

The confidence interval by the bootstrap percentile method(percentile interval) is obtained by
percentiles  of the empirical bootstrap distribution of R . Let A& be the empirical

cumulative distribution function of R Then it is constructed by

B
)ig (s)=% EII( R’ < s), where s is arbitrary real value and X -) is an indicator

function. And let H® _l(a) be the 100a empirical percentile of R~ given by
ﬁ'-l(a)= inf{s: H (s) = a}. (3.2)

That is, )ig ) (a) is the Bath value in the ordered list of the B replications of R b. If

Ba is not an integer, we can take the largest integer that less than or equal to (B+1)a.
Then 100(1—2a)% percentile interval for R is approximated by

(8 (@, 8 (1-a). (33)

3.2 Bias correct method

The BC method adjusts a possible bias in estimating R. The bias correction is given by

= 0 (R = d>‘1[71§ gll( ﬁ"’sR)], (3.4)

where ¢_1( - ) indicates the inverse function of the standard normal cumulative distribution
function. That is, ?0 is the discrepancy between the medians of & and R in normal

unit. Therefore, we have 100(1 —2a)% approximate BC interval for R given by
(B (a), B (a), (35)

where a), = (D(Z EB +Z(a)) and ay= ¢(2 /Z'B +Z(1_a)).
3.3 Bias correct acceleration method

The BCa method corrects both the bias and standard error for R. The confidence
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interval by BCa method( BCa interval) requires to calculate the bias—correction constant zp
and the acceleration constant « In fact, the bias-correction constant EB is the same

as that of BC method. And (?, measured on a normalized scale, refers to the rate of change

of the standard error of R with respect to the true reliability K.
For the parametric bootstrap method, all calculations relate only to the sufficient statistic
y__,Sz, Y and Si for u,, oz, u, and of,, respectively. Of course, X |, Sﬁ, l—/,, and Sf

2

are distributed My, oﬁ/Nl), (/N - X (N —1), Nu, . ozy/Nz) and
2 — _

(/Ny) - ¥ (N;—1), respectively. Also, X , S Y and S are stochastically

independent. Let _’ﬁ‘=( X ...53, Y. .Si) and n'=(/1x, 0’3. Hy, 0?&). Then the joint probability

density function of ﬁ can be written as
£ ) =f( 2)exole 2. 2)— T 1)), (36)

where

el A1) A2

2Ny, X —Ny X'-NS]  2Nw, ¥ —N, ¥ .'~N,;
20 20,

NM/ZNNJZ

gl 2, 2)=

+ N12—3 - log(SY) + N22_3 - log(S%)

and T( 2)= 1;’;‘2‘ T )

For multiparameter family case, we will find & by following Stein’s construction{1956).

That is, we replace the multiparameter family I ={f 1’(2)} by the least favorable one

parameter family §\={f (D= =f 71152}, whereZ=(X,Y). Then we first obtain @

such that the least favorable direction at 7= 7 is defined to be ,c/é=( ['/i)—l v 7

where 2":,; is Fisher information matrix and © 7 1s the gradient of & given by

v = ggl s=7 - BY some algebraic calculation, we have
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NJ/SE 0 0 0
=] 0 NS, 0 0
2 0 0 NJ/(2SH 0

0 0 0 N,/ (2S%

and

1
V SE+SE
1

y S2+8°
X -7Y
2(ST+SH7 |
X -7Y

T 2S2+8H

<D
=)
I

Hence, we have _’al’=( W W W, W), where

YN SIES YT Ny Si+s Ny(Si+55H%
S X —Y) . A . |
W= Ny SZ T 53)3/2 . Following Efron(1987), @ can be obtained by
3
5=L ) 77(0)

6 (2@

3.7

T 2+iw ~ N
where @9 )= %‘)—lh-o. By calculating ZP"’( +) and @, we can obtain a by
~ 1 $3+8,
a=F " Toro\TE
6 (si+sp)¥*”

where

(3.8
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N W 20WSH2—4WW X Si+2(W X )2]

$1=_2”L—?;r SG
N[ W 2WSHE—AWW, Y SE+2W, Y )*
=75 | — i + ,
2|l s, S,
N[ 2w —6(WSHW+12W, Wit X _Si—6 W X °
$3= 9 |~ S5 + K
and
_ N[ 2w —6(WS)'W LW W Y S—6 W' V.
$4 = 2 SG Sy8 .

Therefore, we have 100(1 —22)% approximate BCa interval for R by

[0 B (ap)), OB (a))]. (3.9
_ - é\g +2(a) _ ~ 20 +Z(l—a) o~ .
where a3 = m[ z+ 1= & 2,429 ] = (D[ z+ =& 24209 | and 2 is

the same as that of BC method.
3.4 Percentile- ¢ method

The confidence interval by the bootstrap percentile- ¢ method(percentile- ¢ interval) is
constructed by using the bootstrap distribution of an approximately pivotal quantity for &
instead of the bootstrap distribution of 8 We define an approximate bootstrap pivotal quantity
for & by

& STUD™ 8—6/\—-‘8‘ , (3.10)
)

where o";‘ is the bootstrap estimator of g, that is,

o+ o) -
= vy , (3.11)

K

'e)

—~2 ~2 2 . ~2 ~2 2
where o, ', Oy ‘. K , 3" and 0' are the bootstrap version of 4&,, 0y, K, &
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and @, respectively. We compute the empirical distribution function  H gup of 8 STUD
by
1 B ~rh
H'STUD(S)=‘B? 2 I &8 srup<s), (312

b=1
for all s. Let H _lgTUD denote 100e empirical percentile of & srup. And we compute
ﬁ.—ISTUD(a’) by
B srp(@=infls : B srn(s)=a). (3.13)
That is, H —lgwp( @) is the Ba™ value in the ordered list of the B replications of
& stup- Then we have 100(1 ~22)% approximate percentile- ¢ interval for R by

[0+ &+ Hsrn (@), 08+ 55 B  (1-a)] (3.14)

4. Monte Carlo Simulation Studies

To compare the proposed bootstrap confidence interval estimates with the confidence
interval estimate based on asymptotic normal distribution, we will compute the results

obtained in Section 3. The methods are compared mainly based on coverage probability (CP)
and interval length (L). The normal random numbers were generated by IMSL subroutine
RNNOF. We use the true reliabilities R=0.3, 0.5, 0.7, 0.9 and batch sizes /= /,=3, 5, 10, 20

with fixed 7,=n,=3. We also use confidence level (1—2a)=0.90. For given independent

random samples, the approximate confidence intervals for each method were constructed with
bootstrap replications B=1000 times. And the Monte Carlo samplings were repeated 500
times. Table 1 provides the coverage probability ( CP) for all cases. Table 2 reports the
length ( L) of all intervals.

Based on the Monte Carlo study, our conclusions are summarized below.

(1) In the most cases, the proposed bootstrap confidence intervals are better than that of
the interval based on asymptotic normal distribution for all R even in small batch size in the
sense of CP, which is well illustrated in Figure 1. In particular, BC and BCa intervals
work well.

(2) In the most cases, the values of L for all approximate confidence intervals tend to

decrease as R deviates from 0.5, which is illustrated in Figure 2. As one might expect, the
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value of L for the interval based on Aminzadeh’'s method is shorter than those of the
intervals based on bootstrap methods.
(3) The values of CP for all approximate confidence intervals converge to true coverage

level (1—2a) as the batch size increases, which is illustrated in Figure 3. Also, the values of
CP for the intervals based on all bootstrap methods are closer to true confidence level than
that of the interval based on Aminzadeh’s method for most batch sizes. In particular, the
values of CP for bootstrap methods are much better than that of the interval based on

asymptotic normal distribution for large R value.
(4) An inspection of Figure 4 reveals that the values of L for the approximate intervals

based on all methods decrease as batch size increases, and might converge to the true
interval length.
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Table 1. Coverage Probability ( CP)

Batch | R | Aminzadeh Percentile BC BCa Percentile-t
size

0.3 7840 8460 8980 .8680 9580
3 0.5 7820 8180 .8940 .8640 .9440
0.7 7800 8460 9060 8700 9620
0.9 6580 8100 8720 .8460 9220
0.3 7840 8620 8900 .8780 95040
5 0.5 8360 .8660 9060 .8820 9200
0.7 8360 8840 9060 .8980 .9440
0.9 .7480 8480 8820 .8780 8920
0.3 .8580 8920 .9020 .8960 9120
10 05 9140 9100 .9300 .8980 .9380
0.7 8420 8580 8820 8720 .9060
0.9 7420 8520 8800 8720 . 8830
0.3 8460 8820 9040 .8840 9140
20 05 8820 8760 8920 .8680 8960
0.7 8820 8860 9060 .8900 9260
09 7960 9020 8980 9080 .8880

Table 2. Interval Length (L)

Batch | R | Aminzadeh Percentile BC BCa Percentile-t
size

0.3 3240 3721 3871 3792 5392
3 0.5 3624 4259 4322 4291 5348
0.7 3179 3765 3911 .3849 5303
0.9 1751 2047 2428 .2222 5244
0.3 .2663 3025 3074 .3040 3550
5 05 .3068 3361 .3380 .3375 3756
0.7 2702 3012 3071 .3055 3624
0.9 1449 1715 1895 1791 2945
0.3 .1989 2153 2171 2161 2336
10 0.5 2295 2397 2406 .2408 2514
0.7 .1988 2147 2170 2162 2344
0.9 0997 1241 1312 1261 .1586
0.3 1440 1546 1553 1557 1601
20 05 1652 .1686 1690 .1692 1717
0.7 1428 1537 1547 .1543 1588
0.9 0735 0931 0957 .0934 1038
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