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Abstract

In this article we consider a sequential procedure for the fixed width
interval estimation of the means of two mutually independent linear
processes. It is shown that the proposed stopping rule is asymptotically
efficient as in iid samples (cf. Robbins, Simons and Starr(1967)).
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1. INTRODUCTION

Consider two mutually independent linear processes

Xt"'pul —-_—Zaié‘t_i, {Et} ~ 1id (0,0’%) (].l)

=0
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and

Yi— o = ij’h—j» {n} ~iid (0,03), (1.2)

=0

where the parameters py, o, 07,03 are unknown and the coefficients a; and
b; are real numbers satisfying -2 a;| < oo and 352, |b;| < oo. Robbins,
Simons and Starr (1968) proposed a sequential procedure for the fixed width
interval estimation of the difference of the means of two iid populations. In
this article we consider an analogous procedure for estimating the parameter
A= py = po.

Since the work of Robbins (1959) there have been a large number of articles
and developments on both sequential point estimation and interval estimation
for iid random variables. Sequential estimation in time series emerged lately
compared to iid cases. See Sriram (1987), Fakhre-Zakeri and Lee (1992, 1993),
and the references cited in these papers.

Suppose that one wishes to find a confidence interval for A = pu; — o
of width 2d and with coverage probability 1 — a (0 < o < 1), based on
the random sequences {X;} and {Y;} in (1.1)-(1.2). To get the confidence
interval, the following central limit theorem is useful:

.)_('r _75 - (ﬂl _ /’LZ)
(12/r + w?/s)1/2

2 N(0,1) as 7,5 — oo, (1.3)

where
X, = 1 Sl X Vo = 571 i Vi r? = (D20 0i)?07 and w? = (532 6)%03
Based on this, if

I=1,=[X,-Y,—d, X, -Y,+d] (1.4)

is the interval of width 2d centered at X, — Y, then for all sufficiently large
r’ S)

P(Ae])~2¢((T2/r +‘12/S)1/2> -1, (1.5)

where ®(-) is the standard normal distribution. Hence, I has an approximate
coverage probability 1 — «, providing that

2 2 1
T < -, (1.6)
r S b
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where b = (2£2)? and ®(z,) = 1 — .
Regarding r and s as continuous variables and using the Lagrange multi-
plier method, one can see that (o, s¢) satisfying (1.6) that minimizes n = r+4s

is given by
ro = br(T +w) and sp = (T + w). (1.7)
For this pair,
ro/so = T/w (1.8)
and the total sample
no = b(7 + w)?. (1.9)
Moreover, due to (1.5) and (1.6)

(liirréP(A €l,s) 21 —a. (1.10)

However, in real practice 72 and w? are unknown, and in order to construct
confidence intervals one has to estimate 7% and w?. In the following we give a
sequential procedure for determining r, s in such a manner that (1.7)-(1.10)
will hold. The procedure is similar to that of Robbins, Simons and Starr
(1967) in iid cases.

In order to estimate 72 and w?

consider the random variables

Z(Xp,h - X)X - X))

and
. s—h

bu(h) = 7Y (Yin = V(¥ = V).

t=1

They are conventional estimates of the autocovariance functions v(-) and é(-)
of the processes {X;} and {Y;} at lag h, respectively. Then, in view of the
fact

O)-‘rQi'y(h) and w2:5(0)+2i6(h)

we employ as estimates of 7% and w?
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and
0 = Q0 > 0) + ¢, (22 <0),

where {c,;n > 1} is any sequence of positive real numbers decaying to 0, and

with {h,;n > 1} being a sequence of positive integers such that as n — oo,
hy — 00 and h,/n* — 0 forall A > 0. (1.11)

A typical example of such sequences is k,, = [(logn)?], where [z] denotes the
largest integer that does not exceed z.

To start the sequential procedure we take my observations on {X,} and
{Y;}, where my is initial sample size, and take observations until we find the
pair (r, s) satisfying

r > b7 (7, +ws) and s > boy(F, + ©s), (1.12)

which is motivated by (1.7). To reach such r and s the proposed sampling
scheme is as follows: at the stage we have taken r > m observations on {X;}
and s > mg observations on {Y;}, we take the next observation on {X;} or
{Y;} according as

r/s < 7 Jws or r/s > T, [0s. (1.13)

Based on (1.12), the stopping rule is defined as the pair (R, S) € T such that
N:=R+ S <r+sforall (r,s) € T, where T is the set consisting of pairs
(r,s) satisfying (1.12).

In Section 2 we show that the suggested stopping rule is asymptotically
efficient (cf. Theorem 1), and provide detailed proofs.
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2. INTERVAL ESTIMATION

Theorem 1. If Ele|*) < oo and E|p|** < oo for A > 2, then as d — 0, we
have
N/ng — 1 as. (2.1)
PAel)—1-a
EIV/TZO — 1.

To establish the theorem we introduce a series of lemmas in the following.

Lemma 1. If E|e,|* < oo and |n;|** < 0o, A > 2, then for all { > 0,
P(|7} = 7% > ¢) = O((h/r)") '

and

P(ja? —w?| > () = O((hs/5)").

-

Proof. A slight modification of Fakheri-Zakeri and Lee (1992) yields the
lemma, and we omit the proof for brevity. a
The following corollary is a direct result of Lemma 1.

Corollary 1. Under the same condition of Lemma 1,

P(|#2 = 7% > () = O((h/)")

T

and

P(|&2 = w?| > ¢) = O((hs/5)").

Therefore, 72 and &? converge to 7% and w? almost surely as r, s go to infinity.

Lemma 2. Under the same condition of Lemma 1,

P17, + @) — 7(r + w)| > ) = O(max{(h,/r)", (hs/)*}) (2.4)
and

P(1&(7, + &) — 7(r + w)| > () = O(max{(h,/7)*, (hs/s)*}).  (25)
Proof. Note that

P(1% (5 +00) = 7(r +w)l > &) < P =77 > (/3) (2.6)
+ P(]djszw(@f —w?)] > c/3> (2.7)
+ P( ﬁi (72 =) > g/3>‘ (2.8)
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Since the argument in (2.8) is bounded by

P77 = 7% > 7([3w) + P(72 < 0) = O((h,/r)*)
due to Lemma 1, and similarly the arguments in (2.6)-(2.7) are O(max{(h,/s)*,
(he/7)*}), (2.4) is yielded. The proof of (2.5) is similar to that of (2.4). O

Lemma 3. Under the same condition of Lemma 1,
R/ro —» 1 and S/sg — 1 as. as d— 0.

Proof. Suppose that R > mg and just before Rth observation on {X:}, there
were 7 observations on {Y;}. Then by our sampling scheme

(R=1)/j < Tro1/d;
and by the stopping rule
R —1 <bfr_1(Fro1 + &),
which leads to
R < bfp_1(Fr-1 + &;) + mo. (2.9)

The above remains valid even when R — mg. Since R — oo and R/j —
a.s. as d — 0 in view of the lemma of Robbins, Simons and Starr (1967, P.
1358), it follows that j — oo a.s.. This together with (2.9) and Corollary 1
implies
lir? sup R/b < 7(7 + w) as
—0
Meanwhile, the reverse inequality for the limit-inf follows from the definition.

Thus, R/ro — 1 as d — 0. The convergence result for S is yielded by similar
arguments. O

Lemma 4. Under the same condition of Lemma, 1,

YR*VS_(/UI—,U{Q) D
(%}%/R_ A§/5)1/2 ‘}N(Oal) as d—_)o

Proof. Without loss of generality, we assume p1 = pr2 = 0. Since 7? and &?
go to 7% and w? as r, s — oo due to Lemma 2, and since R and S diverge to
infinity almost surely as d — 0 by Lemma 3, #2 and &% converge to 72 and
w? in probability as d goes to 0. Therefore, in view of the following:

Xn—Vs X, - V. Xp—X, ~Vs+7.

(7270 + w2/s)1/Z (72]r0 + w?/30) 1/ + (72/r0 + w2/sg)172
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it suffices to show that

P

1/2(’(3— X )50 and sé/z(st—?SU)—»().

T0
Here we only provide the proof for the former because the latter can be
handled similarly. Simple algebra shows that we only have to show

_]/Z(SR_S )_]2)0

(cf. Lemma 3). To this end, consider the time series X;,, = Y7, a;;—; and
put Srm = Y12y Xim. By the Beveridge-Nelson decomposition (cf. Phillips
and Solo (1992) and Fakhre-Zakeri and Lee (1992, P. 193)) and Lemma 3, we

can write for each m > 1,

ro 2 1Shm = Seom| = |3 a)rs " S, el +o0p(1) as d—0, (2.10)
=0

t=Tmin

where r;, and rg., denote max{R,r,} and min{R, ¢}, respectively. Now,
following the arguments similar to those of Gut (1988, P. 16) we can show
that the left hand side of the above equality is op(1).

Note that for all § > 0,

limsup P(r, ~1/2 ISk — Srm| > 0)

d—0
00 R
< limsup P( > [ai||r;1/225t_2-| > 0)
d—0 t=m+1 t=1
= 0( ) lal),
i=m-+1

which can be yielded following essentially the same lines in the proof of
Lemma 2 of Lee (1994). Also, similar to (2.11) we have

limsup P(ry?|S,, = Spom| > 0) =0 3 |ay]). (2.11)
d—0 i=m+1

Now, in view ot (2.10)-(2.12) and Proposition 6.3.9 of Brockwell and Davis
(1990) we establish the lemma. O

Lemma 5. Under the same condition of Lemma 1, {N/ny} is uniformly
integrable.
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Proof. Let ¢ > 0 and Ky = [b{(7 + w)* + 2(}] + 1. For all n > K, and any
rn, and s, such that r, + s, <n,

P(N>n) < P(R+S5>r,+s,)

< P(R>r, or S>s,)
< P<rn < b7, (Fr, + &) or s, < b, (7, + d)sn))
S P<7:7‘n(7trn+('&3n)_7-(7-+w)l><)

+P(|¢I)Sn(7°rn + 0, —w(T +w)| > C)

< K{(hr /1) + (R /52)"} (K > 0),

where the last inequality follows from Lemma 2, and thus 2%, P(N > n) <
oo, for example, by setting r, = s, = n/2. Hence, if B is a positive real
number such that b(7 4+ w)?B > K,

/ N/nedP < / NdP
N/ng>2B N>2Bb(r4w)?

< 2 (N — K;)dP
N>Kd

SZZ (N > n),
n=Kg+1

which goes to 0 as d — 0. This completes the proof. a

Proof of Theorem 1. (2.1) and (2.2) are obvious in view of Lemmas 3 and
2.4. (2.3) is a direct result of (2.1) and Lemma 5. O
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