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Abstract

The multiprocess dynamic survival model is proposed for the ap-
plication of the regression model on the analysis of survival data with
time-varying effects of covariates, where the survival data consists of
numbers of deaths at certain time-points. The algorithm for the recur-
sive estimation of a time-varying parameter vector is suggested. Also
the algorithm of forecasting of numbers of deaths of each group in the
next time interval based on the information gathered until the end of
current time interval is suggested.
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1. INTRODUCTION

Cox(1972) proposed the regression model for the survival analysis to sepa-
rate and estimate effects of covariates which are assumed to be fixed in time.
In certain cases (Stablein et al.,1981), it has been observed that effects of
covariates vary in time. Gamerman(1991) developed the dynamic Bayesian
model for the survival data consisted of observed survival times by incorpo-
rating the hazard rate of a time-varying parameter vector modeling effects of
covariates into the dynamic generalized linear model(West et al.,1985).

Now, provided only numbers of deaths of different groups at certain time
points are available, intuitively we consider binomial trials to analyze this
data to estimate the failure proportion in each time interval. To introduce
the regression model for the survival data into this case, we assume that the
failure proportion is the product of a covariate vector and a time-varying
parameter vector modeling effects of different covariates. We develop the
multiprocess dynamic survival model by incorporating the failure proportion
of a time-varying parameter vector into the multiprocess dynamic general-
ized linear model(Bolstad,1988) with a distributional assumption of numbers
of deaths, which generalizes the application of the multiprocess dynamic ap-
proach(Harrison et al.,1976) to the regression model for the survival data.

The multiprocess dynamic survival model is described in Section2. The
algorithm for recursive estimations of a parameter vector under the multipro-
cess dynamic model is provided in Section 3. Also the algorithm for the fore-
casting of numbers of deaths in the next time interval is provided in Section 4.
The performance of the estimation and forecasting under the proposed model
is illustrated via the simulated data in Section 5.

2. MODEL DESCRIPTIONS

Here we assume that there is no censoring and that the number of deaths(failures)
of individuals of the j-th covariate vector Z;, j = 1,---,J, follows a piece-
wise binomial distribution which has a constant failure proportion in each
time interval as

0;(t) = bi;y for t € I = (rimq,7)yi =1, -, s,
where 7y is usually set to 0 and I, = (7,_1,00). We denote it by

Yi; ~ Binomial(nijaai(j))’
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where Y; is the number of deaths of a covariate vector Z; in the time interval
I;, n;; is the number of the alive of a covariate vector Z] at the beginning
of the time interval /;, and 6,y is the failure proportion of individuals of a
covariate vector Z; in the time interval I;. We denote the set of numbers of
deaths in the time interval I; by Y;, and the corresponding set of observed
numbers of deaths by y,.. Let D; be a set of information of the time interval
I; which can be represented as the set of numbers of deaths in previous time
intervals including /; and let D;_,(;) be a set containing D;_; and 4, - -, Yis,
where y;; is the observed number of deaths of individuals of the covariate
vector Z; in the time interval I;. Likelihood L; of (6;;, - -,0;7) in time interval
I; is obtained as

J
Li(alyi-aDi 1 H( )951(‘]’ ei(j))n'-’_yi]_

Likelihood L; is used to update prior distributions of 3; which is linearly
related to 6,;) by bi;y = Z;B; in each time interval I;. Here we define the
perturbation of the time interval as a set of perturbations of each parameters
of a parameter vector. We define the number of perturbations of a parameter
vector as the possible number of combinations of parameters of a parameter
vector We assume that the model selection probability of the time interval
L, = ), is fixed prior to obtaining any informations from individuals alive in
the time interval I;. Let o; be the perturbation index variable of interval I,
then

" = P(a; = k|D)) fork=1,-- K, [=0,---,i—1.

[3

Then the multiprocess dynamic survival model is defined as follows.

i) Observation equation :

Y;]’ ~ Binomial(nij,@(j)) for: = 1, e, S, ] = 1,' . ',J.

ii) Guide relationship:

ei(j)IZjﬁ,' for Z‘:1,‘-‘,S, ]:1,"]

ii1) Evolution equation:
Bi=Gifici+w; for i=1,--- s,

where G; is a known transition matrix of the time interval I;, and w; is
the evolution error vector whose distribution is specified by mean vector
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0 and the variance-covariance matrix Wi(k) which depends on the value
of the perturbation index variable of the time interval I;, o; = k, for
k=1,---,K, and is independent of the distribution of the parameter

vector of the previous time interval.

3. RECURSIVE ESTIMATION OF A PARAMETER VECTOR

The process is started with the initial distribution of a parameter vector
at time 0, (,, specified by mean vector Eo and variance-covariance matrix
V,, where 8, and Vj are given prior to time interval I, which do not affect
distributional behaviors of the parameter vector in future time intervals for
a certain extent of time elapsing.

At the beginning of each time interval I;, each of K posterior distributions
of B;_1 obtained in time interval I;_; leads K prior distributions of 3; which

. . kl . . . kl
is specified by mean vector a,(- ) and variance-covariance matrix Rl(- ) as

(B;lalpha;_y = k,alpha; =1, D;_ V)simla (kl),R(kl)]’

1

where

o = G.a%, RM = avia 4wl

2

With informations from first (j-1) observations, the joint prior distribution
of B; and 0,(;) is obtained by the guide relationship,

8, RN R
| ;1 = k,alpha; =1, D;_q(;_ ~ , v
(01.(]) 1 1(j-1) (7kl 54(]]'01) qgcl)
(3.1)

where

fi(jkl) = Zijaz(';d)’ Sz] Z”R and kl) S(kl Zzlja
with a(fl)—a *) and R(kl R( . Here the prior distribution of 6;;y is assumed
to be a conjugate beta distribution (bl(-fl), rz(»;cl)), where bl(-;-cl) and rl(;l)
mated in terms of the mean and the variance of the distribution of 6,

as, respectively,

are esti-

() such

k! kl

g0 pUR (L pE0y ),

k-1 kl ki
g I (= 1 - 0y,
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With information from the j-th observation the posterior distribution of 6;;
1s obtained as

(igyleics = ky s = [, Di_ag)) ~ Beta(d + yis, vl + ny; — 4i;)(3.2)

Using (3.2) and applying the linear Bayes estimation on (3.1) the updated
distribution of 3; given D;_,(;) is obtained as

(k! kl
(Bilaioy =k, = l7Di—l(J')) ~ [51(3 )’ Vlg )]’

. B 4y
(k) (K 6 Yi ki
BED = gl 4 gl e (b(kl) ; I ))

GO Rl(kl)_Sl(kl)SQ(kl)’ql(]I;l)*l

(0% 4 y) (%) 4 s — ) )

+SISH g0 (
i (6 rff” + ni;)? (bg'd) + Tz(-]l'cl) +ni;+ 1)

Since there is no parametric evolution in each time interval, the joint prior
distribution of 3; and 0;(;41) is given as

. (k_l) (k) (kl)
( 9.@ | iy =k, a4 = lvDi—l(j)> ~ [( s ) ) ( P SMA )] )
i(5+1) fi,j+1 Sly]‘l'l 9ii+1

where

(k) _ Ay (kl)
ai,j+l - ﬂ fz ]+1 - Z,J+1 7,741
(k) (k1) o(kD (ki)
Ri,j+1 = V 51 J+1 T Zi,j+1Ri,j+1
(kly (kl) '
TG = Sij1Zijpr-

When all observations in time interval I; are processed K? posterior dis-
tributions of 3; are obtained as

(Bleir = ke = 1, D) ~ B, V),

where

1

Di=Diagy, B =850 and v =V,

Here the posterior distribution of (f;|e; = [, D;) is represented as the
mixture of K posterior distributions of (5;ja,_; = k,; = [, D;) with the
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posterior index probability p1 . Using that
Jaicr =k, =1, D;_y)

p(y:
ﬁ ( ) L) 4y )T 4 ng — yiy)
j=1 yt] F(b( ) + T(kl) -I— TL,']‘) ‘

the posterior index probability is obtained as
pl(-kl) = P(ai_l = k,a,i = l!Dz)
o< pyary s Yislaioy = ke =1, Di—1)P,('f)17r§l),
where p( ) = P(a;_; = k|D;_1). Thus the posterior distribution of 3; given

. . (1 . . .
a; = l and D; is specified by mean vector ﬁ,( ) and variance-covariance matrix
!
7A ), where

(3

kl) kl)/

Ma-

B -

V;(I) i[v(kl kl )(ﬁ () 5(kl ) ]p(kl / ()

And the distribution of 3; given D; is specified by mean vector Bz- and variance-
covariance matrix V;, where

Bi = Z/B(l)p1 )

l 1

/\

Vo= z[v, +(B: = BO)(B: — BOY 161

4. FORECASTING OF THE NUMBER OF DEATHS

In this section we obtain the forecasted value of Y;,, ; in terms of the value
of E[Y;41,;1D;], 7 =1,---,J, based on informations gathered until the end of
time interval I;.

At the beginning of time interval I;;;, we obtain K prior distributions
of Biy1 from each of K posterior distributions of 8; through the evolution
equation, which are

(ﬁH—llai = kaai+1 = lvDi) [ 1—]:-11)7R1(f€|-ll)] k7l = 17' o 7[('
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By the evolution equation and the guide relationship, the joint prior distri-
bution of B;41 and #;11(;y, J = 1,---,J, is obtained as

3 al(kl) Rl(_kl) Si(kl) ,
( 0 +1. | O = k7 dip1 = l, Di ~ Ujil y S(k-}—)]/ (ljl}] y (41)
i+1(7) fz-{-—l,] i+1,; iy,

where
Kl ki Kkl kD) kl)
fi(+1)] = Z] S+1)u Sz(+1)j = Z; Rz(+1)7 q1(+1 J Sz(-}—l,]Z;

Here the prior distribution of 91“ is assumed to be a conjugate beta distri-
bution (b(kl) ik ;). Note that bhLl ; and r1+) are estimated to be expressed

1,50 Titly 1j
in the mean and the variance of the distribution of 6;1,(;) in (4.1) such as,

respectively,
kl) kl)? kl kl
1(+1,] fz(+1),_7( - fi(+1),j) - fi(+l)j7
(kD)= (k1) ki)
2+1)] f(+l,_7( f1(+l)]) (1 - f1(+1,_7)

Thus the distribution of (Y41 ;|0 = k, a1 = 1, D;) is specified by the mean

(*) and the variance Vl(fi)] as, respectively,

luz-i-l,]
ki
#(kz) . ”z’+1,jbz('+1),j
i+, T (kD) (k)
b£+1),‘7 + 7’2(_'_1)1]‘
pikD (KD
V'(fll)‘ = Kl Lk+ll’] 1+}c7l] et !
i+1,y
(bz('+1),j + 7"@(+1),j)(bz('+l),j + Z('+1)J +1)

2 (k1) (kD)
n1+1 jb2+1 ]r1+1 7

kl) (ki ki) kil
(b5+1 J + 1+1)j) (b$+1 ] 1(+1)] + 1)

By collapsing we obtain the forecasted distribution of Y4, ; given D;,

(K+1,le'i) ~ [ﬂH—l,j, ‘/H-l,j]v 1= 17' T8 1? (42)
where
) ()0
Hiv1,; = Z Hiv1,5P0 Tt
k=1
X (k1) (k1) (k) (k) (D
Vi+1,j = Z [V;-}-l T (ﬂi+l,j - ﬂi+1,j)(ﬂi+1 J H‘l-l-l,_]),]pi i1

k=1
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The mean of Y,y ; given D;, p1;4;;, is used as the forecasted value of Y1
J=1,---,J,in time interval I;;,.

5. ILLUSTRATIONS

In this section we consider the performance of the estimation and the
forecasting proposed in Section 3 and 4 through the Monte Carlo simulation
studies. The data consists of numbers of deaths of individuals in 50 time
intervals, where individuals are divided into two groups. The first part of
the data which is assumed to be the set of numbers of deaths of the group
1 consists of 50 simulated random samples of the starting size 200, from the
population of the failure proportion is 0.09 in each time interval. The other
part of the data which is assumed to be the set of numbers of deaths of
individuals of the group 2 consists of 50 simulated random samples of the
starting size 200, from the population where the failure proportion is 0.05 for
the first 30 samples, increases by 0.03 in each of next 5 samples, and remains
at 0.2 in last 15 samples. Thus the sampling distribution of the number
of deaths of individuals of the group j in the time interval I; is a binomial
distribution such as,

Y;; ~ Binomial(ny;, 0y;)), fori=1,---,51, j =1,2,

where n;; is the number of individuals of the group j alive at the beginning
of the time interval I; with n;;=200. In the multiprocess dynamic survival
model we proposed, the failure proportion of the individuals of the group J
alive at the beginning of the time interval I; assumed to be the linear function
of the parameter vector 3;,
0i5) = Z; i

with Z;=(1,z;) and §;=(8,:,51:), where z,=0 for individuals of the group 1
and z;=1 for individuals of the group 2 alive at the beginning of the time
interval I;, Bi; is the parameter modeling the effect of the difference of the
group 2 from the group 1 on the survival pattern. We assume that there
are two perturbations for the parameter f;; in each time interval, steady
change and sudden slope change numbered by 1 and 2 respectively. The
model selection probability and the transition matrix in each time interval I;
1s assumed by

7r1(1):0'9’ 7r1-(2):0.1, Gi=1I, for i=1,---,50.
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Figure 1. Estimated Mean of The Parameter /;;
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We start the analysis with the prior distribution,
(BolDo) ~ [0.011,0.01L,],

and the variance-covariance matrix of the evolution error vector by

m _ (0 0 @_(0 0
Wi —<O 0.001)’ Wi _<O 0.01 /°

Figure 1 shows the considerable time variation of the mean of the param-
eter 3y; for the effect of the difference of group 2 from the group 1. We notice
that, the mean of the parameter retains steady values around —0.05 nearly
until the time interval I3, gets sudden increases to nearly 0.1 in next 5 time
intervals and slow increases in last 15 time intervals. Figure 2 shows the fore-
casted number of deaths and the observed number of deaths of individuals of
the group 2 in the next time interval. In figures one can see that the multi-
process dynamic survival model gives quick responses to real changes but it
is not quite sensitive to abrupt changes.
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