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Abstract

In contrast to the multiplicative risk model, the additive risk model
specifies that the hazard function with covariates is the sum of, rather
than product of, the baseline hazard function and the regression func-
tion of covariates. We, in this paper, propose a method for checking the
adequacy of the additive risk model based on partial-sum of matingale
residuals. Under the assumed model, the asymptotic properties of the
proposed test statistic and approximation method to find the critical
values of the limiting distribution are studied. Several real examples
are illustrated.
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1. INTRODUCTION

The additive and multiplicative risk models provide the two principal
frameworks for studying the association between risk factors and disease oc-
currence or death.

The multiplicative risk models(Cox,1972) with the partial likelihood prin-
ciple(Cox,1975) has become exceedingly popular for the analysis of failure
time observations. This model specifies that the hazard function for the fail-
ure time T associated with a p x 1 vector of covariates Z is of the form

At Z) = Xo(t)g(n'Z), (1.1)

where )\g(-) is unspecified baseline hazard function, ~y is a p x 1 vector of
unknown regression parameters and g(-) is relative risk function, which must
be positive. Taking g(z) = e which is the most common form leads to the
proportional hazards model(PHM).

In contrast to the multiplicative risk model, the additive risk model spec-
ifies that the hazard function associated with covariates is the sum of, rather
than the product of, the baseline hazard function and the regression function
of Z. Therefore the hazard function is of the form

A6 Z) = Ao(t) + Bo'Z, (1.2)

where g is a p x 1 vector of unknown regression parameters.

Numerous graphical and analytical methods have been suggested for check-
ing the adequacy of proportional hazards model by several authors including
Lin and Wei(1991). In paticular, Lin, Wei and Ying(1993) introduced a new
class of graphical and numerical methods which are derived from cumula-
tive sums of martingale-based residuals over follow-up time and/or covariate
values.

Although additive risk models in various forms have been eloquently advo-
cated and successfully utilized by many authors, no satisfactory semiparamet-
ric methods has been developed for model (1.2). Recently, Lin and Ying(1994)
introduced a simple semiparametric estimating function for gy, which mimics
the matingale feature of the partial likelihood score function for vy under pro-
portional hazards model. And Kim(1995) provided some test procedures for
checking the adequacy of the additive risk model with time-invariant binary
covariate.

In this paper, we propose a test statistic for checking the additivity of
risks. which extends the Lin et al.(1993)’s idea in the proportional hazards
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model to the additive risk model with time-invariant continuous covariate.
In Section 2, we review the inference procedures under additive risk model.
Also we propose a test statistic for checking the adequacy of the model and
study the asymptotic properties of it. In Section 3, model checking technique
is described and two examples are illustrated to apply our results.

2. MODEL AND MARTINGALE RESIDUALS

Let T and C denote the failure time and censoring time, respectively. As-
sume that the vector of covariates Z is bounded and 7" and C are conditionally
independent given Z. Suppose that the data consists of n independent repli-
cates of (X,A,Z), where X = min(T,C), A = I(T < C), and 1 — A is the
censoring indicator function.

Let N;(t) = A; I(X; <t), (i =1,2,---,n) be a counting process for the
i-th subject, which indicates that the true failure time of the i-th subject is
observed up to time t.

Under model (1.2), the intensity function for the counting process N,(t)
is given by

Vi (t)dA(t; Z;) = Yi(t){dAo(t) + ByZ:(t)dt},

where Y;(t) is a predictable indicator process indicating whether or not the
i-th subject is at risk just before time t, and Ag is the baseline cumulative
hazard function.

The counting process N;(-) can be uniquely decomposed so that for every
i and t,

Ni(t) = Mi(t) + [ Vi(o)dA(si Z0),

where M;(-) is a local square integrable martingale.
Therefore, the natural estimator of Aq is given by

Roff, o) = [ Bialdld) = ¥lo)30)ds

LY (o) ’ 21)

where 3 is a consistent estimator of 8.
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Then by mimicking the partial likelihood score function in the PHM, Lin
and Ying(1994) proposed the following estimating function

) =Y [T 2N - Vi0dho(s.) — VST (22

and they estimated the regression coeflicients by solving the equation U (3) =
0. The resulting estimator is given by

j= [z [ vtz - ’Z(t)}mdt]_l [Z [ 120 - Zwyan)|, 23)

where
— r LY ()2 (¢
20) - T KOZ)
5=1Y5(t)
Furthermore, they showed the weak convergence results of the random vector
S
nz (8 — Po).

For each i, the martingale residuals are defined as

(2.4)

Mi(t) = Ni(t) — /Ot Yi(s){dAo(8,s) + B'Zqds}, (2.5)

where A, is defined in (2.1) and g is defined in (2.3). For each i, the martin-
gale residuals can be interpreted as the difference between the observed and
expected numbers of events for the i-th subject over the time interval [0, t].
And as ordinary residuals in linear models have, the martingale residuals have
the following properties.

Proposition. For any ¢,
(ii) E(M(t)) — 0 ,foreachi, as n—o0,
(iii) Cov(M,(t), M;(t)) — 0, fori#j, as n—o0.

Proof. By (2.5),
iﬁi(t) :/Oti:dNi(s) —/Otil@(s){dﬁo(ﬁ,s)qLﬁA'Zids},

hence (i) follows from (2.1).

By Taylor series expansion of M; at Bo, we get, for each ¢,

Mi(t) = My(t) — At Yi(s) k=1 4M; ()

L=17 TR LR, B) .
sron() A



Checking the Additive Risk Model 437

Since 3 is a consistent estimator of 3¢, the remainder term, R(t, 5) converges
to zero. Thus (ii) follows from the fact that for each ¢, E[M,(t)] = 0.

Now for each i # j,

BT - T0) ~ - B [ <, i) ()

L Yi(s)
t YJ(S)
md(MnMi>(5)
+E /(Y(i;c(s)z‘[, (M, My) (s)

B Yi(s)Y;(s)
punn E/ Zk IYk(s dAQ(S)

— 0 asn — 0.
Here ~ stands for aysmptotic equality and thus the result (iii) follows. O

The estimating function (2.2) is equivalent to
06) = 3 712~ ZOHEN - Vi B,
and can be written as U (3, 00), where
=3 [ 2~ BOHAN) ~ ¥i(6)8 ),

Note that U(3,00) = 0 and UB,t) = o5, Z,M;(t), which is a function of
the martingale residuals.

Now we propose the following test statistic for the additive risk model
based on partial-sum of martingale residuals with respect to follow-up time
and covariate values

W(t,z) = Y 1(Z < 2)Mi(2),

where z = (21, 22,-- -, 2,) € R?, and the event {Z; < z} means that all the
p components of Z; are not larger than the corresponding components of z.
If the additive risk model holds, this process will fluctuate randomly around
zero. But the asymptotic distribution of the test statistic W (t,z) under the
additive risk model can not be derived directly, so the following theorem is
useful.
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Theorem 1. Let

_ _ e H(Zy < 2)Yi(t)
g(t,Z) - ZZII Yk(t) ]

and Z(t) and §(t,z) be the limit of Z(¢) and g(t,z), respectively. Then the
process n‘%W(t,z) is asymptotically equivalent to the process n"%W(t,z),
where

W(t2) =3 [ < 2) = (s, 0} M)
- ;I(Zf < 2) /Ot Yi(s)<zi - Z(s))lds
B[ - sz
3 [z 2y amo)

Proof. By the Taylor series expansion of W (t,z) at 8y, W (¢,z) can be
rewritten as

W(t,z) = i](zi < z) {:Mi(t) - /0‘ E(S)%i%

i

=312 < 3) [ V()2 Zs)Yds (G~ o)

The equality holds because the second derivative of W (¢, z) is zero. The first
term of the right-hand side of the equality is rewritten as

2/(: [I(Zi <z) - y‘(s,z)]dMi(s).

and by the Taylor series expansion of U (B) at Bo, (fj — fBo) in the second term
of the right-hand side of the equality, is of the form

-1

(B —Bo) = E /0 " (Zi - 2(3)}Yi(s)Zi'ds]

< 2/0“’{&. — Z(s)HdNi(s) — Yi(s)Bo'Zuds}.
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Thus by the above assumptions of this theorem, the result follows. O

In order to derive the asymptotic distribution of n‘%W(t, z), let us con-
sider the asymptotic distribution of n™ W (¢,z).

Theorem 2. Under the additive risk model, the process n“%W(t,z) con-
verges weakly to a mean zero Gaussian process.

Proof. Let

-1

An(t2) = [Z [7 (2 - oy zas]
y gl(zf < 2) /Ot Yi(s)<Zi _ Z(s)) ds

Then

n W (tz) =t 2_":/0"{1(2[ < 2) — §(s,2)} AMi(s)

— A (t,z)n"? i/gw{zi — Z(s)} dM.:(s).

The first term of the right-hand side of the equality is tight because the two
moment inequalities hold in Lemma 1(Lin et al.(1993) ). And by the law of
large numbers, A, converges to some nonrandom function and

nt i/ﬂw{zi — Z(s)} dM.(s)

is also converge in distribution, so the second term is also tight.
Let

hi(t,z,s) = I(s < t){I(Z; < z) — §(s,2)} — A (t,2){Z; — Z(s)}.

Then W (t,2z) is rewritten as
W (t,z) Z/ (t,2,8) dM,(s).

Since W (t,z) is simply a sum of independent random variables, it follows
- from the central limit theorem and the above tightness result that the pro-
cess n W (-,-) converges to a mean zero Gaussian process. The covariance
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-1
P)

function for n= W is given by

Cov <n_%f/-‘7(t1,Z1),n—%W(tQ,Z2)>

= E[/Ooo ;Li(chlyS)ﬁi(tQ,ZQ,S)K(S){dAo(S) + BZ.ds}|. (2.6)

O

3. TESTING THE ADDITIVE RISK MODEL

We now need to show how to approximate the limiting distribution of the
process n"%W(t,z). If we know the stochastic structure of the martingale
process M,(s), we could easily simulate W. But the distributional form of
M,(s) is unknown, so one way is to replace M,(s), which has a known distri-
bution. Since for any ¢, E[M,(t)] = 0, Var[M,(t)] = E[N,(t)] (Fleming and
Harrington(1991)), a natural candidate for M,(s) is N,(s)G,, with the same
first and second moments, where N,(s) is the observed counting process and
{G,; 1 =1,---,n} denotes a random sample of standard normal variables.
Therefore we obtain the following theorem.

Theorem 3. Let

W (t,z) = ZH:I(ZL < t)A{I(Z; < 2z) — 3(X,,2)}G,
- i[(zi < z) /Ot Yi(s)(Zi - Z(s)>/ds

n -1

x [; /0°°{zi _Z(s)}Yi(s)Z! ds] < gAl{Z[ ~ Z(X))G..

Then the conditional distribution of n=TW (¢, z) glven {X;,A;, Z;} is the same
in the limit as the unconditional distribution of n fW(t z).

Proof. Let

-1

A (t2) = [Z [ - Ty zas]
y gf(z,. <2) /Ot Yi(s)<Zi _ Z(s)) ds,
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and

Rt z,s) = I(s < ){1(Z: < 2) - 5(s,2)} = A, (t,2){Z: — Z(5)}-
Then le(t,z,ﬂ and A, (t,z) are the limit of A(t,2,s) and A, (t,z), respec-
tively. Thus W (t,2) can be rewritten as

Wit z)= Zi:/ow Ri(t,z,s) dN,(s) G..

The only random components in W(t, z) given {X;, A, Z;} are the indepen-
dent standard normal variables {G,}, and the proof of the tightness of W (t,2)
is analogous to that of Theorem 2. Also conditional on {X;, A;, Z;}, the pro-
cessn TW (t,z) is a mean zero Gaussian process, and the covariance structure
is given by

Cov (nA%W(t1,Zl)>n7%ﬁ/\(t2,Z2)

{XivAiaZi} 1= 1,2,"',7’L>

1 &~ —
— ;l‘Zh[(tl,Zl,S)ht(tQ,Z2,S)dN[($),
=1

which converge to (2.6) with probability one by the law of large numbers since
Y,(s){dAo(s) + B'Z.ds} is the intensity function of N, (s). O

According to the above results, W (-, ) and W (-, ) have the same limiting
distribution. Therefore, to approximate the distribution of W (-,-), we sim-
ulate a number of realizations from W (-,-) by repeatedly generating normal
random samples {G,} while holding the observed data {X;, A, Z,} fixed.

Now, we develop a model checking technique by considering process W.
The following notation will be used : W refer to an original process, w to its
observed value, and the corresponding quantities under the Gaussian approx-
imations are indicated by W, .

Since under the additive risk model the distribution of W (-,-) process
is centered arround zero, it is natural to construct a goodness-of-fit test
based on the statistic § = supt,le(t,z)l. An unusually large value of
s = sup, , |w(t,z)| would indicate that the additive risk model may be in-
appropriate. So the p-value, P(S > s), can be approximated by P(§ > s),
where § = sup, , |W (t,z)|. Note that P(S > s) can be estimated by generat-
ing a large number of normal samples {G,}, conditional on {X;, A;,Z;}, and
that P(S > s) converges almost surely to P(S = s) as n — o0o. Therefore,
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if p-value is less than a given significance level a, then the assumed additive
risk model is not valid.

4. REAL EXAMPLES

We now apply the proposed techniques to the two familiar data sets. In
our examples, the p-value is always based on 1000 realizations.

The first one is taken from Embury et al.(1977). The clinical trial to evalu-
ate the efficacy of maintenance chemotherapy for acute myelogenous leukemia
(AML). The first group(treatment group) received maintenance chemother-
apy ; the second group(control group) did not. The objective of the trial was
to see if maintenance chemotherapy prolonged the time until relapse, that
is, increased the length of remission. The data set consists of the length of
complete remission for two groups of leukemia patients. The only covariate

is the group indicator, which is coded as 0 or 1. As we know, the assumption
of PHM hold for this data set.

Now, we apply this to a additive risk model. Then (1.2) can be rewritten
as

A(t; 1) = A(t;0) + B.

That is, under additive risk model, 8 can be interpreted as the difference
between the hazard rate of treatment group and control group. In this case,
the additive risk assumption is hold (p-value = 0.627) and the estimator 3 is
-0.02685. Figure 1 and Figure 2 display the cumulative hazards function of
control and treatment group in the PHM and additive risk model respectively.

The second example applies to Stanford heart transplant data taken from
Crowley and Hu(1977). In this data, we only regard age as covariate, then
PHM does not fit this data set(Lin et al.(1993)). But we can see that the ad-
ditive risk model fits well(p-value = 0.238). Therefore, it seems that applying
additive risk model is more appropriate than PHM in this data.
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Figure 2. Estimator for /A\(t;O), /A\(t; 1) in PHM
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