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Abstract

A study is made of approximate technique for structural reanalysis
based on the force method. Perturbation analysis of generalized least
squares problem is adopted to reanalyze a damaged structure, and
related results are presented.
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1. INTRODUCTION

Given the external loads on a structure, the object of structural analysis
is to determine the resulting internal forces, stresses, and displacements. The
solution to this problem is provided by a variational principle (minimization
of energy) subject to the linear elastic relationships among the nodes and
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elements of the finite element model of the structure, which can be stated as
the quadratic programming problem

1
Min 3 fTAf subject to Ef = s. (1.1)

First-order necessary conditions for a solution to the quadratic programming
problem above are given by the 2 x 2 block system of linear equations

ERA IR w2

where ) is a vector of Lagrange multipliers. Here A is the element flexibility
matrix (or equivalently the element stiffness matrix is A™1), E is the equilib-
rium matrix, s is the vector of external loads, — A is the displacement vector,
and f is the system force vector. There are two methods generally used to
calculate (1.1) or (1.2), the displacement method and the force method.

Displacement Method : Consider (1.2) and assume A is invertible and E
has full row rank. Block elimination in (1.2) yields the steps:

(i) Solve EAT'ET) = —s,

(ii) Solve Af = —ETA.

Force Method : Consider (1.2) and assume N7 AN is invertible, where N
is a matrix whose columns form a basis of the nullspace of E.

(i) Solve Ef, =s, f, isany particular solution to Ef = s.

(ii) Find a basis of the nullspace N of E, and solve

NTAN fo = —NT Af,, fois a redundant force vector. (1.3)
(iii) Set f = f, + N fo.

The purpose of a reanalysis procedure is to analyze a damaged structure
using, as much as possible, quantities calculated in the analysis of the original
structure. This procedure also can be applied to the statistical problems.
Suppose that we have a data and assume some parts of data are contaminated
or damaged by external sources during the computation. For example, a
study investigating variation of temperature is undergoing but there could
be an abrupt change of temperature by external sources such as a storm or
unexpected movement of atmospheric pressure, that is, some parts of data
are damaged. It is not possible to delete or treat them as outliers in this
case. Under this circumstance, it is necessary to analyze the destroyed data
as what it is.
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Various means to accomplish reanalysis of damaged structures have been
investigated by Scott, Westkaemper, Sejal and Stearman(1979), Arora, Haskell
and Gavil(1980), and Hemming and Venkayya(1980). This work, for the
most part, has been based on the matrix displacement method and itera-
tive schemes. However, a series of papers Heath, Plemmons and Ward(1984),
Berry, Heath, Kaneko, Lawo, Plemmons, and Ward(1985), Gilbert and Heath
(1987), Coleman and Pothen(1986), and Coleman and Pothen(1987) have
done some reanalysis work using the force method, and recent research Batt,
Gellin, and Gellatly(1982), Batt and Gellin(1985), and Plemmons and White
(1990) indicates that the force method is a viable alternative not only to
the solution of problems of dynamics and weight optimization but also to
reanalysis.

In this paper we discuss the reanalysis based on the force method in the
small scale damage case. There are two different types of problems involved
in the small scale damage case. The first problem is a case that either one
or two elements have been modified, and the second problem is a case that
almost all of the components of the stiffness matrix have been modified. Both
cases will be discussed in the next two sections.

2. REANALYSIS WITH QR FACTORIZATION

Given a particular solution f,, the main task of the force method is the
computation of the redundant force vector fo which satisfies system (1.3).
System (1.3) is simply the normal equation for the weighted least squares
problem:

Ming, [GH(N fo + f,)l2, (2.1)

where G is Cholesky factor of element stiffness matrix A~!. The traditional
method of normal equations consists of the direct application of Cholesky’s
method to the symmetric positive definite matrix NT AN. Unfortunately, ex-
plicitly forming the matrix NT AN can lead to loss of sparse structure of N
and worsening of the conditioning of the problem. A better approach in this
regard is to apply orthogonal transformations to the matrix G~!N, leading
to an algorithm of the following form:

Orthogonal factorization

PIG'NPf =Q l ;g ] : (2.2)
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[2]———QTP¢T1ﬁ,

fo= P R e,

where R is an upper triangular matrix of order n —m, P; and P, are permuta-
tion matrices of order n and n — m, respectively, Q is an orthogonal matrix of
order n, and ¢ and d are vectors of length n — m and m, respectively. Several
methods for solving problems of the form (2.1) are described in Lawson and
Hanson(1974).

Reanalysis by the force method work based on QR factorization has been
done by Plemmons and White(1990) for the case that only one element has
been modified. The element flexibility matrix A=diag(A), where each A, is
an n; X n, symmetric positive definite, is symmetric positive definite. If we
assume only one block of the matrix A has been modified, that is, one element
changed, then A will be modified by changing one A, to A+ 6, 6,{ where each
8 is nx X ny. Suppose we use an orthogonal factorization to solve (2.1), then
the advantage of the force method is that one can use the QR factorization
of the unperturbed problem of (2.2) to solve the perturbed problem

NT(A+ 68T eX )N (fo + Afo) = —~NT (A + ex6:6; €l ) f,, (2.3)

where each ¢, is an n x n, matrix having all zero components except kth block
which is the n, x n, identity. Based on the assumption that only one block
of the matrix A has been modified, Plemmons and White(1990) established
following theorem.

Theorem 1. Let fy be the solution of (1.3). Let G"'N = QR, where G is
a Cholesky factor of symmetric positive definite matrix A~! and N has full
column rank. Then the solution of (2.3) is given by fo + Afy, where

Afo = [R_IR_T —RIRTU(U+UR'RTTU)WWIRTIR™T | g4,

U. = NTeib, (n—m)xn, matrix,
I = n; xng, identity matrix,
g = —NTerbc80 ef (N fo+ f)

However, poor results of (2.1) may be obtained with either QR factoriza-
tion or normal equation when the matrix A is ill-conditioned, and this gives
us motivation to use Paige’s formulation in Paige(1979), which can consider-
ably reduce this difficuly, to solve (2.1). Furthermore we apply perturbation
analysis discussed in Paige(1979) to the more general case that almost entire
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components of the stiffness matrix have been modified(e.g. perturbation oc-
curs due to excitation of frequency in forced response of an elastic structure
to a time-harmonic load).

3. REANALYSIS WITH LEAST SQUARES SCHEME

In this section we present formulation of Paige’s linearly constrained sum-
of-squares scheme, then apply the perturbation analysis with these schemes
to our discussion about reanalysis.

3.1. Paige’s Formulation

Following Paige(1979), if we define the weighted residual vector
v=G ' (Nfo+fp)
then problem (2.1) can be written in the equivalent form
Min, ;,v" v subject to Gv = N fo + f,. (3.1)

Because of its special form, problem (3.1) is sometimes referred to as the
linearly constrained sum-of-squares problem. In addition to leading to a bet-
ter numerical method, (3.1) also has important theoretical advantages over
(2.1) in that it requires no restrictive assumptions regarding the ranks of the
matrices involved. In particular, it is possible to compute a G which is suit-
able for use in (3.1) even if the element stiffness matrix is only semidefinite.
Furthermore (3.1) could be expressed as

v

Min, || [ 0, I ] [{}0 ] |2 subject to [ -N, G ] lfo } =

and the methods in Lawson and Hanson(1974) could then be applied. The
method in Lawson and Hanson(1974) appears to be the most numerically
reliable of these, although no rounding error analysis is given. However,
such a method does not treat fo,v,N,G separately. In reanalysis of the
damaged structure case, the nullspace basis matrix ¥ and particular solution
f, remains unchanged while G has been modified. So, it is important in
the analysis to treat them separately. Here we will give a numerically stable
algorithm that takes advantage of the special form of (3.1), and maintains
fo,v, N, G as separate throughout. This will allow us to carry out a reanalysis
based on the resulting decomposition.

373
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Formulation : First, decompose N in (3.1) as

o[l e

where Q = (Q1, Q2) is an orthogonal matrix order n, R is a nonsingular upper
triangular matrix of order n — m. The constraints in (3.1) then split into

Q1Gv=Rfo+ Q1 f, (3.3)
Q3 Gv = Q3 [ (3.4)

Since R has full row rank, (3.3) can always be solved for f, once v is given,
and so (3.4) gives the constraints on v, and (3.1) becomes

Min,v" v subject to Q3 Gv = Q7F f,. (3.5)

Next, apply the QR factorization to (Qf G)T starting from the lower right
components to decompose Q7 G so that

Q5GP = (0,Ly), P = (P, P,) orthogonal (3.6)

and L, has full column rank.
That is, decompose QTG as

T T
Trp_ | QIGPL Q1GP | _ | L1 Ly
Q GP = 0 Ly =l o 1, | (3.7
Assuming L, is nonsingular we now obtain
v=PL;'QL S, (3.8)

since QgGPz = L. Finally, fy is recovered from the triangular system (3.3).
3.2. Reanalysis with Paige’s Formulation

Applying Paige’s formulation to reanalysis can be stated as follows: Since
each block A, of A is symmetric positive definite matrix, we can compute
G + 6G,, of perturbed block from A +64,. Now let our perturbed data result
in G = G + 6G leading to the solution v + v, fo + &fo of the perturbed
problem (3.1). Note that N and f, remains unchanged in our approach to
reanalyze the structures based on the force method. Considering (3.1) for
both the original and perturbed problems, we see that év and 6 fy give

Ming, 4,207 (6v) + (6v)7 (6v) (3.9
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subject to G(6v) = N(6fy) — (6G)v. (3.10)

The constraints (3.10) have the same form as in (3.1), so we can proceed as
in (3.7)
—— Ly L
T _ 1 L2

o= |5 ) o)
where P = (P, P;) is orthogonal, and L, has full column rank. For solving
a sequence of problems with fixed N but varing G, in theory it is necessary
to compute the orthogonal transformation @ only once. Applying the per-
turbation analysis discussed in Paige(1979) to our case, we get the following
results which could be viewed as an important special case of Paige’s work.

Lemma 1. Let v be the solution of (3.5). Let G be the Cholesky factor
of the symmetric positive definite matrix A~!, and N has full column rank.
Assume L, and Ly are nonsingular. If év satisfy (3.9) and (3.10), then

sv = [P\P] (6G)" Qa(L; ") P + PoL; QF (6G)| v and, (3.12)
6vle < R ol (3.13)
2 % o (Ly) a(fg) G 2 .

where e¢ = ||6G || and Q, is as in (3.2), and, o (Ly) and o (L;) are the smallest
nonzero singular values of L, and L,, respectively.

Proof. From combining (3.10) and (3.11), that is,
- = =T
Ii I || P [r R

L2P, (6v) = —QL (6G)v, (3.14)

and this must be a consistent system for the perturbation to be meaningful for
this problem, since (3.14) is underdetermined system. We can then express

we get

ov = 1_5121 + -p—222, Z9 = f;ng ((SG)’U for all Z1, (315)

since LyP, = QIG and QI GP; = 0. Substituting (3.15) in (3.9) and taking
the derivative with respect to z; gives

2 = —Ffv, dv = —Ffﬁfv + FJQIQEF (6G)v. (3.16)
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The second term of (3.16) can easily be bounded, but the first is difficult to
bound. From (3.8),

Piv="P,PL;'Q% f, = P, PPl v, (3.17)

and we will seek an expression for ﬁfPZ. To do this we first consider the
following expression

QT(G—F(SG)?: |:-El _12_12 ]’

0 L,

from (3.11). And then comparing the first set of columns of both sides, it
will give
Q3 (6G)Py = —Q3GP; = —LyPy Py,

since QT GP, = L,. This can be used with (3.16) and (3.17) to give an
expression for §v as follows:

bv =—PPjv+ P,L, (6G)v
= —P,(P, P,PIv) + P,L, QT (6G)v
= P, [L;'(~QF 6&)P))]" Pfv + oL, ' Q5 (6G)v
= PP, (6G)" Q2L; T PFv + PL, ' Q¥ (6G)v.

By taking the 2-norm we obtain

= —1

-— =T —
l6vll = [IP1P} (8G)" Q2Ly" Py || + P2L; Q5 (66)]] vl
- -1
< [I6&) L™ 1+ 1T; 116G 1] Holl.

Let e¢ = ||6G||, and let o(L;) and o(Ly) be the smallest nonzero singular
value of L, and L, respectively, then
€aq €g
bvf| < + — v|. a
ool < |+ =22 e

Theorem 2. Let f, be the solution of (3.3), that is, the solution of (1.3).
Let G be the Cholesky factor of the symmetric positive definite matrix A1,
and N has full column rank. Then the solution of (3.9) is given by fo + 6 fo
where

6fo=R"! [(flzfz—ng +QY)(6G) + L, P, (5G)TQ2L2_TP2T] v, (3.18)
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and

“E12||2 ||fx||2fc ||U”2
60l < [<1+ U(B)>ec+( Ll >] e )

¢¢ = ||[6G||; and Q is as in (3.2), and, 6(L»), 0 (L), and o (N ) are the smallest
nonzero singular values of Ly, Ly, and N, respectively.

Proof. From combining (3.2) and (3.10),

QTN (6f0) — QTG (6v) = QT (6G)v
T __ T
- [g](éfo)— [ o ]G’(&v): [8; J (6G)v
= R(6f0) — Q1 G(6v) = QT (6G)v
= 6fo=R! [Qf(&G’)v + Qf@(év)] , since N has full column rank.

By using (3.12) in previous Lemma, and since Q1 GPy = L3 and QTGP, =
fl’
8fo =R [QT(6G)v + QTG (+P.L, Q5 (6G)v + PiP1(6G)" QoL;" P v)]
= R QT (6G)v + LisL, Q5 (6G)v + TPy (8G)T Qo L; T PF ]
= R [Ty QF + QT) (6G) + L1 Py (6G)T QuL; 7 PY | .

Since o(R) = o(N), we can get (3.19) from (3.18) by taking the 2-norm.
a

Note that assuming L, and L, are nonsingular, that is, Q¥G and QIG
have full row rank, respectively, then the computation for 6 f, is simple. Based
on various assumptions in Paige(1979), we can get a tighter bound for §f,
compared to (3.19).

4. CONCLUSION

It can be concluded that an effective method for reanalysis can be em-
ployed for structure initially analyzed by the force method, and that this
method utilizes a portion of earlier computations in order to solve such mod-
ified problem without starting the computation over from the beginning. We



378 Kyung-Joon Cha, Ho-Jong Jang and Dal-Sun Yoon

have suggested an implementation of the reanalysis based on the force method
which uses Paige’s linearly constrained sum-of-squares.

The formulation (3.1) of the problem contributes greatly to its solution
and analysis, as well as generalizing the problem. For example, since Gv =
N fo+ f, is now just a set of constraints, it is clear that the transformation in
(3.2) can be carried out by any well-conditioned nonsingular matrix Q. Then
it is clear that the algorithm can often be speeded up by using stabilized
nonunitary transformation in Peters and Wilkinson(1970).

The formulation (3.1), however, does not take advantage of any special
structure the matrix G have(G will be triangular if it is computed by the
Cholesky factorization, and in our case GG has block diagonal structures as
well); indeed, that structure is in general destroyed by the orthogonal trans-
formation Q. Retaining the triangular structure of G throughout the compu-
tations and related numerical stability can be our future work that we hope
to soon obtain more results.
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