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Abstract

The chi-squared type statistic generated from the empirical process
can be used for testing the goodness of fit hypothesis on iid random
sample. Lee (1995) showed that under some conditions, the chi-squared
type statistic is asymptotically maximin in the sense of Strasser (1985).
Since the chi-squared type statistic depends on the choice of points in
the unit interval, it is worth investigating the points yielding more
efficient tests. Motivated by this viewpoint, we are led to study the
asymptotic relative efficiency of chi-squared type tests in the same
setting of Lee (1995). Some examples are given for illustration.
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1. INTRODUCTION

Suppose that one wishes to test a goodness-of-fit hypothesis on random
sample. Koutrouvelis and Kellermeier (1981) and Csdrgo (1986) have sug-
gested the empirical characteristic function as a test procedure and proposed
a chi-squared type test statistic. Similarly, it is possible to use the chi-squared
type statistic generated by the empirical process. Lee (1995) investigated
its statistical meaning by studying the asymptotic behavior of the empirical
process under a sequence of contiguous alternatives. He showed that under
certain conditions, the chi-squared type statistic is asymptotically maximin
in the sense of Strasser (1985, P. 136). In this paper, we study the asymptotic
relative efficiencey of the chi-squared type statistic in the same setting of Lee.

Let X1, X5, ..., be iid random variables with distribution F (z : ), where
0 is an unknown parameter. The estimated empirical process based on
X1i,..., X, is defined by

A

Yn(t):n_l/zzn:[l(F(Xj 18.)<t)—t], telo1], (1.1)

where 7(-) denotes the indicator function and 8, is an estimate of . Under
regularity conditions, Y, converges weakly to a mean zero Gaussian process Y
(cf. Shorak and Wellner (1986, Ch. 5.5)). Assume that Y, converges weakly
to Y. Then the chi-squared type test statistic at the points t;,. .., in [0,1]
is defined by

7,579, (1.2)
where
- IS 7 ~ A !
7, =8, () = (Valta), o Ya(t) (1.3)
and ¥ = (0;)f,_; is the positive definite matrix whose (i,j)-th entry is

EY (t,)Y (t;). Since Y, 2 Y, we have that

i =7 Bt k), (1.4)

=n

where x?(k) denotes a chi-square random variable with the degrees of freedom
k.

On the other hand, under some sequence of contiguous alternatives, the
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empirical process Y, in (1.1) converges weakly to another Gaussian process
Y*(t) = wu(t) + Y (t), where u(t) is a drift (cf. Durbin (1973)). As a conse-
quence, under the alternatives,

M -1a D I

957 S (ke Y ), (1.5)
where p — (u(t1),...,n(ts)) and x*(k,v) denotes a noncentral chi-square

random variable with the degrees of freedom k and noncentrality parameter
V.

Lee (1995) showed that under certain conditions, (1.2) has the maximin
property asymptotically as sample size increases. For showing the asymptotic
maximin property, he introduced a family of alternative hypotheses H =
{{H.(v,G)} : v > 0,G € G}, where G is an arbitrary index set. A typical
example is

Hn X177XnN(1—’7/\/.7:L_)F+(7/\/;{)G7 ’7>07

where F is a true underlying distribution under the null hypothesis and G is a
distribution function. Then one can write H = {{H,(7,G)} : v > 0,G € G}
where G is the family of all distributions on the real line.

In this paper, we denote by H, the null hypothesis and assume that
{H.(7,G)} at v = 0 becomes the null {Hp}. Furthermore, it is assumed
that Y, in (1.1) converges weakly to a Gaussian process with a drift which
is proportional to v > 0, say, yue under {H,(v,G)}, whereas the covariance
structure remains the same as under the null Hy. These assumptions are
natural, for instance, in view of the results of Durbin (1973).

Note that the statistic defined by (1.2) depends on the choice of the points
ti,...,t.. Hence, it is natural to ask for the optimal point to yield more effi-
cient test. In Section 2, we answer this question by computing the asymptotic
relative efficiency for fixed G € G. Some examples are given in Section 3.

2. ASYMPTOTICALLY RELATIVE EFFICIENCY
We start Section 2 with a lemma. Since the proof is rather standard, we
omit the proof. '

Lemma 1. Let Z be a k x 1 normal random vector. For testing Hg : Z ~
N(0,%) vs. Hy : Z ~ N(ve,E), v > 0, where ¢ is a vector with exle=1,
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the test

1 if (e,z) > 2,

¢(z) = { 0 if (e,z)< 2

is a UMP test, where (a,b) = a' ¥ 'p. For a significance level «, the critical
value z, is the 100(1 — «)-th percentile of the standard normal distribution.

Generally speaking, if a sequence of tests {S, } can attain the same power
with a smaller sample size than another tests {7}, }, we say that {S,} is more
efficient than {T,}. Based on this, we consider the problem of choosing k
points ty, ..., t; € [0,1] which provides a more efficient chi-squared type test.

Let 6 € (0,1] and [n6] denote the largest integer less than or equal to
né. Suppose that Xi,...,X[.s are available observations and Y{né](t)
YW (t) + Y (t) under {Hn (v,G)}. (Examples can be found in Section 3).
Here, Y, is the empirical process defined by (1.1) and Y(t) is a mean zero
Gaussian process. For each t = (t,...,t), t: € [0,1], § (t) = (Yo (t1),.

)A/"(tk))ly_c (t) = (pe(t1),. - pe(ts)), and ¥(t) denotes the positive deﬁntle
matrix whose (i, j)-th entry is EY (¢;)Y (t;). Since

i (&) 3 X ~N(QS(t)) under Ho
and

i ()2 X ~Nypgt),2(1) under {H.(v,G)}

the original sequence of problem of testing Hy vs. {H, (v,G)} is asymptoti-
cally reduced to the problem of testing Ko vs. K; such that

Ko : X ~ N(0,3(t))
and

Ki: X~ N(’Y}_ﬁa(i), £(¢)).

Let (a,b), = a ©(t) 't and ||a||, = (a, a) . By Lemma 1,

. pe ()
.(z) = { L if (ch(z)llt_’£> 7 P (2.1)

0 otherwise
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is an a-level UMP test for Ko vs. Kj. On the other hand, if we use the
sample size [nd], it can be shown that for each v > 0,

( O z.) ~ N(Vollu, @lln1) under K. (2.2)
e 1l -

Now, let s = (s1,...,8x), 8i € [0,1]. Then testing Ho vs. {H,(v,G)}
via using g (s) is reduced to testing Ky vs. K . such that

Ky : X ~N(0,%(s))

and
' AS
KX~ N2 )
e, (s
Then
. pg(s)
¢.(z) = L if (ngctz>||s_’£)s_> Fo (2.3)
0 otherwise
is a UMP test of K, vs. K; and
(—Ef—(Lx) Nl (@)ll1)  under K. (2.9
HE(; (§)||i -

From (2.2) and (2.4), one can observe that

V6l Ol = Ve (s or 6= it (1121l O

yields the same power. Since we are comparing best tests in view of (2.1),
(2.3) and Lemma 1, we are able to say that: if § < 1,7.(t) yields a more
efficient test than g, (s), and otherwise y, (s) would be preferred. This allows
us to define the following.

Definition 1. For fixed G,R = H_,c (s)E M), (g)/;i'c (t)Z 1 (t)p, () is the
asymptotic relative efficiency of the point s with resprect to ¢t.
For fixed G, we can say that t is ‘optimal’ if

1 (T (D (8) = sup g (8) 57 (g ().
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In Definition 1, we can see that the test procedure based on the points which
yields a larger drift and smaller variance is more efficient. This is obvious in
one dimensional case and agrees to our intuition.

3. EXAMPLES

In this section we give some examples where the optimal point in the sense
of Definition 1 can be derived via the weak convergence result of empirical
processes. For any distribution function F, we set

F't)=inf{z: F(z) > t}, te]0,1].
3.1. Continuous Distribution Case

Suppose that X, X,,..., are i.i.d. random variables with a continuous
distribution F. Then it is well known that the empirical process

Y, (t) = n‘”""\i[I(F(Xj) <t)—t], tel01] (3.1)

converges to a standard Brownian bridge W (t) (cf. Billingsley (1968)).

Now let us consider a sequence of a contiguous alternatives
H,:Xy,..., X0~ (1 —~/vVn)F + (v/vVn)G, ~ >0, (3.2)
where G € G = {G : G is a continuous distribution}.

Theorem 1. Let § € (0,1]. Under the alternatives {H,} in (3.2), we have
that

Vingi (1) 2 =yV6(t — G o FH () + W (2).
Proof. Let Uy, Us,..., beii.d. uniformly distributed random variables over
[0,1] and let F,, = (1 — v/v/n)F + (v/+/n)G. Observe that
[ng]

Vsl (€)= [n8] 23 10 (X,) < Fro FTH0) — 1] 2

2 [ng]"V? g(’:] [I(U; <t) -t

i=1

+né]"? (Fo o F7'(t) — t) + Ra(t),



Asymptotic Relative Efficiency 343

where

(]
Rnu):pwy*MEZ{uUjgp;oF*%n)_p;oF~%w-yt—1@ggtﬂ(&@

Since for z € R,
(n8]"2(Fa(z) - F(e)) = —7 ([né]/n)""* (F(z) - G()), (3.4)
we have

sup |[Fno F71(t)—t|<2y/Vn—0 as n— 0.

0<t<1

This together with the arguments of Billingsley (1968, P. 106) yields
sup, |R.(t)] 5o
In view of (3.4), the theorem is established. O

Let T = {(t1,...,tx) : 0 < t; < 1,t; # t; for ¢ # j}. For each t € T, let
) = (Ya(ts), - Ya(te)), B = (05®))5 =1, oi;(t) = t: A t; — tit;, and

g,
p(t ,u(te)). Here, u(t) = pe(t) =t — G o F7(t).

) = (1) = (ultr)s -

Now, let G € G and s,t € T. In view of Definition 1, the asymptotic
relative efficiency is given by

£ ()TN Dr)/ 1w O ®a®)-

and an optimal point ¢ can be obtained by the way that

K (O ®)ut) = supp ()57 (2)u(s)-

seT

3.2. Normal Distribution with Unknown Mean

Suppose that Xi,..., X, are i.i.d. random variables whose distribution
is ®(z — 6), where ®(-) denotes the distribution function of A/(0,1) and 6
is unknown location parameter. In the sequel, we denote ¢ = & . Let Hy
and {H,} be the null and alternative hypotheses, respectively, such that for
1 <1< n,

Hy : Xi~ ®(z—90), (3.5)
H, : X;~®,(z—0), (3.6)
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where ®,(z) = (1 — v/v/n)® + (v/v/n)G,y > 0,G € G. Here, G denotes the

family of all symmetric distributions G such that

/rsz(x) < o0, sup |G (z)| < oo and sup |G (z)] < oo.

Now, we consider the empirical process defined by

Y, (t) =n"V? Z [I(<I>(X,- —6,)<t)— t] , t€1[0,1],

~ n
— -1
where 8, = n ‘ElXj.
J:

Theorem 2. Let 6 € (0,1]. Under {H,} in (3.6),
Vi) (£) = =7V6(t — G 0 87 (1)) + 2 (1),

where Z is a mean zero Gaussian process such that

EZ(s)Z(t)=sNt—st—¢(D '(s))p(®7'(t)) for s,t€[0,1].

Proof. Let ¢; = X; — 6. Then,

R [n6] .
V() = o]/ 3 [I(e; < @7(2) + (g —~ 0)) — 1]
[n6]

= el Y (@) <) -
+  [n6]'2®, (@ (t) + Ra(2),
where

a,(t) = @, (371(t) + (6us) — 0)) — ¢

and

Ru(6) = (6] 2 3" [1(®,(e;) < @ (8)) = aa(t) + £ — 1@, (c,) < 1)].

=1

(3.7)

(3.8)

(3.9)

(3.10)
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By Taylor’s series expansion,

wnlt) = [Ba(@7H(0) + By — 0) — B (@7 (1)] + [8.(271 (1) — {]
= (Bo) = 0),(271()) + () — 6)°2,(¢)/2
+ vt = Go®@ ' (t)/Vn,
where ¢ lies between ®1(¢) and ®*(¢) + (0},5) — 8). Thus it follows from the
fact OA[.,,,M ~ 8 = [né]"! %] e; that

[
j=1

(4]
(6] %, () = [n6] V2 S e,0(®71 (1) — 7VE(t — G 0 BTN (1)) + A, (1),

i=1

where sup |A, ()] = 0 under {H,}. This together with the arguments of
t
Billingsley (1968, P. 106) yields sup | R, (t)] %, 0. Therefore, we can write
t

Yius)(t) = =7 V8(t — G 0 @7 (t)) + Ziag) (t) + ma(2), (3.11)
where sup |7, (t)| = 0 and
t

Z,(t) =n"/? Z [I(@,,,(sj) <t)-t+ ¢(<I>“1(t))sj] .

i=1

Since
n VS I(@a(e;) < t) — ) 2 2 (I(U; < 8) — o],
i=1 i=1

where U; are iid U[0, 1] and since sup |¢(®7'(¢))| < oo, {Z.(t) : n > 1} is
t
tight. On the other hand, by central limit theorem,

(Za(t1), s Zu(th)) > N(0, ),

where (i, j)-th entry of ¥ is equal to the right hand side of (3.10). As a
consequence, Z, converges weakly to a Gaussian process Z with mean zero
and the covariance structure as in (3.10). In view of (3.11), we obtain (3.9).

Let T = {(t,....tx) : 0 < t, < 1/2, t; # t; for i # j} and let for
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each t € T,§ (t) = (Ya(tr),..., Yu(ts)), 2(t) = (0:;@)f 1, 005(@) = 6 A
b — tity — (B ())8(71(¢)) and () = uy (8) = (u(tr), - (te)) , Where
p(t) = pet) =t —God 1(t).
The asymptotic relative efficiency and the optimal point can be obtained in
the same way as Example (1).
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