Abstract
This paper suggests a new diagnostic measure for detecting influential observations in two group linear discriminant analysis(LDA). It is developed from an information theoretic point of view using the minimum discrimination information(MDI) methodology. MDI estimator of symmetric divergence by Kullback(l967) is taken as a measure of the power of discrimination in LDA. It is shown that the effect of an observation over the power of discrimination is fully explained by the diagnostic measure. Asymptotic distribution of the proposed measure is derived as a function of independent chi-squared and standard normal variables. By means of the distributions, a couple of methods are suggested for detecting the influential observations in LDA. Performance of the suggested methods are examined through a simulation study.