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Abstract

The nonparametric deconvolution problems are studied to recover
an unknown density when the data are contaminated with Gaussian
error. We propose the estimator which is a linear combination of kernel
type estimates of derivertives of the observed density function. We
show that this estimator is consistent and also consider the properties
of estimator at small sample by simulation.

Key words : Kernel density estimator; Deconvolution; Consistency;
Fourier transforms; Hermite polynomials.

1This paper was partially supported by Chonnam National University Research Fund,
1994.
1Department of Statistics, Chonnam National University, Kwang-ju, 500-757, Korea.



266 Wan-Hyun Cho and Jeong-Soo Park

1. INTRODUCTION

Recently, there has been a great deal of interest in deconvolution problem
which is focused on the nonparametric estimation of a true probability density
function using sample observations which are contaminated with Gaussian
error. Formally, a deconvolution is given as follows. Suppose that we observe
n ¢id random samples yq,...,y, from the model

Y =X+ 2,

where Y is an observable random variable, Z is a random noise variable
with known distribution and X is the absolutely continous random variable.
Under the assumption that X and Z are independent, we want to estimate
the unknown density function of random variable X nonparametrically.

Such a model with contaminated error exists in many different fields. The
model arises from microfluorometry, medical and chemical region where the
noise factors are partly available. The first work was conducted by Wise
and etc(1977). They consider the estimator of density function from mea-
surements corrupted by independent additive Poisson noise. Next, the in-
version of aerosol size-distribution data (Crump and Seinfeld 1982) and the
deconvolution with B-splines of histograms for DNA-content data obtained
by microfluorometry (Mendelsohn and Rice 1982) are two specific examples.
Liu and Taylor(1989) proposed the nonparametric kernel density estimator
and showed this estimator to be uniformly consistent. Stefanski and Car-
roll (1990) observed that the deconvolution problem of effects for different
types of measurement error has been extensively studied. Finally, Fan(1992),
Masry and Rice(1992) consider the optimal rates of convergence of estimator
in case of Gaussian deconvolution.

2. ESTIMATOR

In terms of density function Y, X and Z, the convolution model is ex-
pressed by g, = f, * h,, and let ¢(¢t) denote the corresponding each charac-
teristic function, it can be written by

oy (t) = ¢x (t) - 2 (2).
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Here we assume that X and Z are independent. Then the characteristic
function of X is

t
ox(t) = w, when ¢z (t) #0 for all t. (2.1)
¢z (1)
Thus if ¢x (t) satisfy the some condition, then by the Fourier inversion
theorem the density function of X may be given by

fx (@) = _2.1; [ ‘: e‘“’%égdt. (2.2)

In this expression, to estimate density function f(z), we first have to
estimate ¢y (t) from the independent random variables Yi,...,Y, and then
it can be computed using the empirical characteristic function . But the
density estimator obtained by this manner may diverge, since ¢z (t) tends to
zero rapidly. Therefore, we may represent the density f(z) as the infinite sum
of orthogonal polynomials and then estimate by taking the only finite sum . In
this paper we examine a closely related procedure for the Gaussian case which
is also based on estimating derivatives. This derivative deconvolution has
been proposed in the literature in applied physics and analytical chemistry.

Assume that the noise has a Gaussian distribution with mean 0 and known
variance o2. Then the characteristic function ¢ (t) and its reciprocal are given

by

¢Z(t) — e—lfazﬂ, ¢21(t) — elfaztz.

Here if we expand ¢21(t) as a power series and it is plugged into formula
(2.2), then we have the formal relation

00 0.2k
fr(e) = L g (-or@) 23)
k=0 < %
where g§,2 k)(.'c) is the 2k-th derivative of gy and is given by
1 i —itz
§() = — [ (i) gy (Dt
T J-o0

In the above formal relation (2.3), the equality is justified by the theorem
due to Rooney (1957). By his result we can have the proposition.
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Proposition 2.1. Let g(z) be the Gaussian transform of the function f(z),
that is,
g(ac) - 900(-T) * f(l')’

where , (z) is the density of the normal distribution with mean 0 and vari-

ance ¢2.

If f(z) is continuous and ¢, (z) * f(z) € L;(—00,00),then

00 027_ k
sim T (1)) = f(x). (2.4

k=0

Proof. We can see the detail of the proof in his paper.

Second,we need the several properties of the Hermite polynomials for our
estimation .

Lemma 2.2. (a) Let H,(z;0?) be the k-th Hermite polynomials with pa-
rameter o as defined
z?  d* z?

Hi(z;0%) = (—0?)exp(—) ——ezp(

2027 dx* ) k=0

2027 T T

Then the following properties hold,

(a.1) / Hy(z;0)H (z;0%) ¢, (z)dz = 6, klo*

o0

(a.2)  o¥(z) = (;213“ H,(z;0%)¢, ()

where ¢, (z) denote the density of the normal distribution with mean 0 and
variance o2
(b) Let g(z) be the Gaussian transform of the function f(z). Assume that
the density f is bounded by some constant C;. Then we have
Vk!
9 (@) < C1 - = (2.5)

ok

Proof. We shall prove the result of (b). From the assumption and the above
result (a.2), we have that

0@ = [ - wel W

-0

(;213 /_o:o flz —u)He(u;0%) 0, (v)du.
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Here using the Cauchy - Schwarz inequality, we have

1 00
199(@)] < ([ 1#@ =)l (w)du) V2
([ (w302 0 (w)d)?
By the assumption and the above result (a.1), we have

V!
g (@) < Cr —. (2.6)
Hence our estimation is obtained to form the estimator of density fx (z)
using estimates of the 2k-th derivative of gy (z) based on the above relation.
In order to do so, we first have to construct estimates of the derivatives of
density function gy (z) and consider the statistical behavior of these estimates.

Let the kernel K (z) be an even probability density which possesses bounded
derivatives up to the (m + 1)-th orders and satisfies

/oo 2?K (z)dz < 00, lim K®(z) =0,k=0,1,---,m,

—-00 jzf— 00

and let ¢k (t) be its Fourier transform.

Suppose we have the independent random variables Y7, . .., Y,, with density
function gy (z) . Then the estimator of m-th derivertives of density function,
g™ (z) is defined by

3 a) = 5= [ eapl=ite) (=it)" gx(tha)gn ()t

where h,, is a bandwidth parameter which tends to zero as n tends oo and
satisfies the some condition. Here ¢, (t) is the empirical characteristic function
defined by

on(t) = Z exp(itY;).

Thus if we express this estimator as a kernel type, then we have the
following form:
13 1 z—Y;
(@) = =3 Gtm) i 9.
gn (.’B) n = hnm+1 ( h )’ ( 7)

n
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where the kernel function G(™)(z) is given by
1 0
G () = / exp(—itz)(—it)" ¢ (£)dt.
T J-0

First, let us consider the some properties of the estimator.

Proposition 2.3. (a) The expetation of the estimator is given by

E@GU N (2) = ™) (z) + h? /_o:o w? K (u)g"™ ) (¢)du,

where ¢ belongs to the interval [z,z + uh,].
(b) Suppose we take the kernel K (.) such as

K(z) = p,(z) * K,(z) for some K,,
Then we have

BGO@) 3M(@) £ 0 r < T
where the constant C; is given in Lemma, 2.2.

Proof. (a) First, we have that

EGM@) = pmrBE (o
| T — U
- hn h,

Here using Taylor’s expansion for g, we obtain that

BEP@) =™ @) + B[ K @)™ (€)du

for some ¢ € [z,z + h,u].
(b) By the definition of the kernel function, we have that

z~-Y z—-Y
Glm)
e (=)

= [ kOEHE D E ey

n

E( GY (
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Thus by the assumption for kernel K () and lemma 2.1.(b),we obtain that

z-Y,  _ yz-Y Vil vVml
E(G(l)( - )G'( )( - ))S(jl.7 —

Now using the formula (2.4) in Proposition 2.1 and the estimates of 2k-th
derivatives of density g(y), we can define an estimator of f(z) as

v(n)

fn(x) - Z ak(n) '-(}r(sz)(m)v

k=0
where §(®*)(z) is an estimator of the kernal type defined in (2.6),
0'2ka
ak(n) = 2k Jo! (_l)ka

and also {7,},0 < 7, < 1, is a sequence of numbers satifying 7, — 1 as
n — 00.

Here we will investigate the asymptotic properties of the estimator.
Theorem 2.4. Suppose that a sequence of numbers {7,.},0 < 7, < 1 satisfy
7 — LrW(1—7)"! — 0 and h:(1—7,)"! — 0 where v(n) — 0o as n — 00.
Then the density estimator f, is asymptotically unbised .

Proof. First, we define two functions f,.(z) and f, ,(»)(z) as follows

v(n)

nwzimme,mwmzzmmww.

k=0
Then the bias of estimator is given by the following inequality,

|Efn(m) - f(x)l < |Efn(.’l:) - fn,v(n)(m)l + 'fn,U(n)(x) - fn(a:)l
Here the first term of the right hand side is by the result (2.5) and (2.7),

R v{n) 00
Bfo(@) = fosm@)] £ B2 Y la(m)]_max_19®()| [ vk (w)du
k=0 -

—-00<z<0
v(n) (2k)!
2 k
< h; ;C g T

IA
<
—
Pead
[~
—_
—
!
3
~—
o
~—
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The second term of the right hand side is by the condition and result (2.5),

|fn,v(n)(x) — fn($)| S Z lak(n)l “05113‘2(00 lg(2k ( )l
k=v(n)+1
o0 2k)!
< X C- *
k=v(n)+1 2kk,

< O(sz’(”)(l — ) h.

Finally, the third term is up to o(1) using the condition for 7,. Thus
combining the three results, we can obtain the theorem .

Theorem 2.5. If 7" (1-7,) 7! — 0, A2n"}(1—7,)"! — 0 and (nhi(M+2)-!
(1-7,)"%2 > 0asn — oo ,then the densrcy estimator f, is asymptotically
consistent for the density f(z) .

Proof. We easily verify that

vin

: 15 -Y -Y
E(fa(z))? = ; ak(n)al(n)h;m”‘”)EG(?k’(x - )G(”)(x -
k=01 n n

A
\_/
—_
~—

)

il
o

i

HL= (B @)

Here using proposition 2.3.(b), the first term of right hand side is given as

1 2n)e(n)
> Z Zak al(n (2k+2t+2)EG(2k)( Y) (20) (u)
M k=0 1=0 h h
v(n) 1 v(n)
1 v (2k)! V@
< h (2k+1)c k —(2[+1
= n kZ% 2+k] T")(ZZ; 2tzr ™)
< ! -2

02 . —m—(l-’fn)
nin

Hence the variance of estimator is

) 1 1.
Var(fa(z)) < Ca - W(l s ;(Efn(w))z-
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Thus the result of theorem 2.4 and the conditions in the assumption imply
that )
E(fn(z) — fo(2))? > 0 as n — oo.

3. SIMULATION

In this section, we examine the sampling behavior of the deconvoluted
kernel estimate in case when the distribution of error Z is taken to be normal
with mean 0 and variance o2

0"

First,we know that the conditions of theorem are satisfied if we take
v(n) =n,7, =1—(logn)Pand h,=n"%, 0<a< %, B8 > 0.
And if we take a kernel function K (z) as the convolution
Cou ¥ a1y P ~ N(0,0),

then the function ng)(w) is

1 b 1 2,2 d?* 1 T
(2k) — . \2k _—mol tt
Gy ' (z) = 5;/_00 exp(—itz)(—it)"e 2" = 1o2F ;90(;;)%

where 0% = (0% + 07) is the standard deviation of kernel function K (z) .
Particularly, we have that for integer k = 0,1, ---,

Q@) = (—o(2), D(2) = - (a® — oL )(—p(Z)),

Ok Ok 0'}1( Ok K

1 1 T
G¥(z) = (2% — 6022% + 304 ) (—o(— ,
K ( ) aff(( K K)(JKSD(GK ))

and so on (see Figure 3.1).
In this case, the deconvolution kernel density estimator is

X v(n)
fa(@) = Y ak(n)g™(z)
k=0
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Figure 3.1. Deconvolution kernel function.
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(a) Unimode N (0, 1) (b) Bimodal 0.5N(—2,1) + 0.5N (2, 1)
Figure 3.2. Gaussian deconvolution

Note : Solide line - true density : dotted line - estimator with zero derivative
: asterisk and solide line - estimator with up to sixth derivatives
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with

. 1 1 z—-Y;
gﬁzk)(m) = ;; h%kHG(zk)( - ).

In the following simulation, we take the distribution of X as either a
normal distribution N (0,1) or mixture normal distribution 0.5N (-2, 1) and
0.5N (2,1). For each cases, 200 and 400 Y’s observations are respectively
generated from model Y = X + Z with Z ~ N(0,0.4%) .

Figure 3.2 presents both the true density of X and the deconvolution kernel
density estimates truncating at the zero and the sixth derivative respectively.
Figure 3.2 (a) and (b) show that the nonparameric deconvolution estimator
very well works by using a lot of derivative estimates. They also suggest that
deconvolution is more difficult in the unimode case than the bimodal case.

And also we need both a large sample and many terms of derivative esti-
mates.

4. DISCUSSION

We have considered the deconvolution based on differentiation in case of
the Gaussian error. Similar results could be obtained for deconvolving other
distribution using appropriately defined systems of orthogonal polynomials.

Deconvolution schems using only a finite number of derivatives and the
same bandwidth were simulated, but it would be demanded more detailed
numerical comparisons for various sample size, error size and choices of the
bandwidth and the true density.

Finally I will thank the referees to check carefully the my paper.
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