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Abstract

The local behaviour of the surface formed by the perturbed max-
imum likelihood estimator of the squared Mahalanobis distance is in-
vestigated. The study of the local behaviour allows a simultaneous
perturbation on the samples of interest and it is effective in identifying
influential observations.
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1. INTRODUCTION

In linear discriminant analysis, diagnostic methods based on the influence
function and case deletion have been suggested for identifying influential ob-
servations. Campbell (1978) used the influence function for detecting outliers
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in linear discriminant analysis. Critchley and Vitiello (1991) considered the
case deletion method to investigate the influence of observations on the mis-
classification probability.

Lawrance (1988) and Tsai and Wu (1992) used the local influence method
inspired by Cook (1986) to get information about influential cases in a regres-
sion problem. They considered the maximum slope of a path on the surface
formed by the perturbed maximum likelihood estimator of a parameter of in-
terest and its associated direction vector. This method allows a simultaneous
perturbation affecting all cases, which is totally different from the influence
function approach and the case deletion method. Lawrance (1988) showed
that the simultaneous perturbation is more effective than the individual per-
turbation.

In this work the local influence method suggested by Lawrance (1988) is
adapted to linear discriminant analysis. The local behaviour of the surface
formed by the perturbed maximum likelihood estimator of the squared Maha-
lanobis distance is investigated, and it leads us to investigating the influence
of observations on the misclassification probability. This method allows a si-
multaneous perturbation on the samples of interest. An illustrative example
is given.

2. A LOCAL INFLUENCE MEASURE

Two independent random samples X;,...,X,, and X, +1,...,Xn (7 = ny+n2)
are drawn from p-variate normal distributions N (11, X) and N (ug, X) with a
common covariance matrix, respectively. The maximum likelihood estimators
of p1, pe and X are the usual sample mean vectors X;, X and the pooled
sample covariance matrix S with its divisor n, respectively.

For computational convenience, we use a reparametrization of 3. Let
A be a lower triangular matrix with positive diagonal elements such that
¥ = AA7T. Let BY = A~!. Then B is an upper triangular matrix satisfying
the identity 3-! = BB”. We denote by b; the ith column of B. The degree
of separation between the two populations can be measured by the squared
Mahalanobis distance

Az = Zp:[b (a1 — ]2.

i=1
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The performance of the Fisher’s linear discriminant function relies on A?
through the misclassification probability ®(—1A). Let A be the maximum
likelihood estimator of A.

We consider a simultaneously perturbed model specified by a perturbation
vector w = (wy, ...,w,)T in which

Xp N(“? E/wr)a

where p equals p; or ps according to the value of . The n by 1 vector
with all elements equal to 1 is written as 1,,. Then the perturbation vector
can be represented by w — 1,, + al, where a indicates the magnitude of the
perturbation and 1 = (Iy,...,1,)¥ of unit length its direction. When a = 0,
that is w = 1,,, the perturbed model reduces to the unperturbed model. The
maximuin likelihood estimator of A under the perturbed model is denoted
by A(w). Then the n + 1 vector (w”, A2(w))” forms a surface in the n + 1
dimensional Euclidean space. A path on the surface at a = 0 and its slope are
considered for investigating the local behaviour of observations. The partial
derivative of A2 (w) with respect to a evaluated at a = 0 is the slope of the
path given by

"l BA2
- Zl’[z 50,

a=0 r=1 Li=1

A% (w)
da

86;(w)

0=6 8’(1),-

w=1:|’ 21)

where the §; are the parameters p, u2 and b, (nonzero components of it)
in the model, and the 6;(w) represent the maximum likelihood estimators
of them under the perturbed model. Denoting the coefficient of I, in (2.1)
by c,, the rth component of the direction vector l,,,, maximizing the slope
is easily obtained as ¢, /(37 ¢?)"/? by the Cauchy-Schwarz inequality and it
yields information about influential observations. Observations corresponding
to significantly large elements of 1,,. in their absolute values need special
attention. In the next section, we briefly describe a procedure for obtaining

l'ma.:z:-

3. A PROCEDURE FOR GETTING A LOCAL INFLUENCE
MEASURE

We write as q;+) the ¢ by 1 vector consisting of the first i elements of a
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vector q. The partial derivatives of A? with respect to the parameters are

A2 p
— = 2 b? — b,
AN? P
_— = =2 b? - b,
E Z;[ i (11— p2)]
AA?
Oby(iy) = 2067 (w1 = m2)l e = p2)s)-

Let w; be the n; by 1 vector formed by the first n; elements of w. The
maximum likelihood estimators of the parameters under the perturbed model
are given by

n n
a(w) = Y wx;/ Y w;
=1 =1

ny ng
fiz(w) = Z Wy +Xny +5/ Z Wny+j
j=1 i=1
and B(w) satisfies the following identity
Bw)'Sw)Bw) = L, (3.2)

where S(w) = (1/n)[X H; XT+X,Ho XT], Xy = (x4, ..., Xp, ), Hy = diag(wy,
vy Wn, ) = W1W7 /17wy, and Xy and H, are similarly defined.

The partial derivatives of the perturbed maximum likelihood estimators
with respect to w, evaluated at w = 1 are

6" w 1 —
Sl = %) (e
Bjia (W 1 %
65)2(+)w1 - E(xn1+r_x2) (IST‘SN2)
ny+r =

and the other cases for the ;. are zero. Finally, the partial differentiation of
both sides in (3.2) with respect to w, shows that 8B(w)/dw, satisfies

the following identity o
: T, . /8B 1. :
(8B(W) ) A + AT ( - (W) > — ———BT (xr _— i) (X,- - )—()TB,
au’r w=1 dwr w=1 n
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where X equals X; for 1 < r < n; and X; for n; +1 < r < n. The solution
to the above equation is obtained by considering a system of linear equations
for solving U

U'v + ViU = C,

where U = (u;;) is an upper triangular matrix, V = (v;;) a lower one and
C = (ci;) is a symmetric matrix. Then UTV is a lower triangular matrix and
VTU an upper one so that the solution U can be found as follows.

STEP I Compute u;; = ¢;;/(2vy) for each i = 1, ..., p.

STEP II For each i from p—1 to 1, compute u;; = (%"Zi:iﬂ Vrillr;) [ Vi
(G=i+1,...,p).

Putting the results above into (2.1) leads to finding l,,,,. A closed form
of 1,42 18 too complicated to write down.

4. NUMERICAL EXAMPLE

The method of local influence is applied to the Flea-Beetles data (Seber,
1984, p.295) which have measurements on four variables for two species of flea
beetles. Nineteen observations are obtained for the first species and twenty
observations for the second species. The observations are labelled as 1 to 19
for the first species and 20 to 39 for the second species.

The index plot of 1,,,, is shown in Fig. 1. Observations 27 and 36 have
high local influence on the misclassification probability, and they are possible
candidates for outliers. They have the same sign in the direction vector 1.,,.
Note that observation 27 is misclassified using the Fisher’s linear discriminant
function.
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Figure 1. Index plot of the maximum direction vector

40



Local influence on Misclassification Probability

REFERENCES

(1) Campbell, N. A. (1978), The influence function as an aid in outlier
detection in discriminant analysis, Applied Statistics, 27, 251-258.

(2) Critchley, F. and C. Vitiello (1991), The influence of observations on
misclassification probability estimates in linear discriminant analysis,
Biometrika 78, 677-690.

(3) Cook, R. D. (1986), Assessment of local influence (with discussions), Jour-
nal of the Royal Statistical Society Sec. B 48, 133-169.

(4) Lawrance, A. J. (1988), Regression transformation diagnostics using local
influence, Journal of the American Statistical Association 83, 1067-
1072.

(5) Seber, G. A. F. (1984), Multivariate observations, John Wiley & Sons.

(6) Tsai, C. H. and X. Wu (1992), Assessing local influence in linear regression
models with first-order autoregressive or heteroscedastic error structure,
Statistics and Probability Letters 14, 247-252.

151



