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Abstract

A model for a system whose state changes continuously with time
is introduced. It is assumed that the system is modeled by a Brown-
ian motion with negative drift and an absorbing barrier at the origin.
A repairman arrives according to a Poisson process and repairs the
system according to an (s, S) policy, i.e., he increases the state of the
system up to S if and only if the state is below s. A partial differ-
ential equation is derived for the distribution function of X(t), the
state of the system at time ¢, and the Laplace-Stieltjes transform of
the distribution function is obtained by solving the partial differential
equation. For the stationary case the explicit expression is deduced for
the distribution function of the stationary state of the system.
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1. INTRODUCTION

In this paper, we introduce a diffusion model for a system the state of
which deteriorates continuously with time. As a repair policy, we adopt a
sort of (s,S) repair policy. The state of the system is initially § > 0 and
thereafter follows Brownian motion with negative drift x, variance ¢ and an
absorbing barrier at the origin. The state of the system is increased by a
repairman who arrives according to a Poisson process of rate . If the state
of the system when the repairman arrives exceeds a threshold s(0 < s < §),
he does nothing, otherwise the repairman instantaneously increases the state
of the system up to S(or replaces the system with a new one).

Baxter and Lee (1987b) introduced a similar diffusion model for a contin-
uous state system, where the amount of a repair is a random variable which
is larger than s almost surely. The diffusion model with (s, S) policy has
been also introduced as an inventory model with the demand process being
a Brownian motion. See Bather (1966) and Harrison (1985). The most of
the previous works, however, have been concentrated on the optimal policy
concerning the barriers s and S which minimize the cost. We, in this paper,
pay our attention to the distribution function of the state of the system for
both finite time and limiting time.

The followings are two examples of the application of our model. For more
examples, see Baxter and Lee (1987b).

Example 1 (Controlling a Production Process)

Consider a production process which may be modeled by a Brownian motion
with negative drift (See Ross (1983, p.201)). Suppose that it is recommended
to repair the process if the state falls below a threshold. However, due to the
unpredictable demand for the product and/or to the availability of a capable
repairman, it may not be possible to stop the process for repair either peri-
odically or whenever the process reaches the threshold. In such a situation,
it is better to check and repair (if necessary) the process whenever a possible
moment for a repair arises. We assume that such moments comprise a Pois-
son process.

Example 2 (Fuelling a Power Station)

Suppose that fuel is supplied at a constant rate to a power station by a series
of regular deliveries. The demand for electricity is continuously changing so
that the stock of unused fuel may be modeled by Brownian motion. The fuel
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is supplied at a rate slightly less than the average level of demand to prevent a
large stock of fuel from accumulating. An additional supplier visits the power
station according to a Poisson process and restocks the fuel if the stock, when
he arrives, is below a threshold. Such a situation would arise if, for example,
the regular deliveries were made by rail according to a specific timetable and
the additional deliveries, perhaps at a reduced price, were made by a ship
with an irregular schedule.

In section 2, we derive a partial differential equation for the distribution
function of the state of the system at time ¢, and we solve the partial differ-
ential equation to obtain an expression for the Laplace-Stieltjes transform of
the distribution function, where some terms are still needed to be evaluated.
In section 3, we obtain an explicit formula for the distribution function for
the state less than or equal to s by a purely probabilistic argument which
does not make use of the partial differential equation, and we use this results
to complete the expression for the Laplace-Stieltjes transform of the distri-
bution function obtained in section 2. For the stationary case, the partial
differential equation becomes an ordinary differential equation. In section 4,
we solve the ordinary differential equation to obtain an explicit formula for
the stationary distribution function of the state of the system.

2. THE Laplace-Stieltjes TRANSFORM

Let X (t) denote the state of the system at time ¢ and let F(z,t) denote the
distribution function of X (t). If A(6t) = A(t+6t)— A(t), where {A(t),t > 0}
is Brownian motion with parameter 4 < 0 and ¢?, then we can have the
following three mutually exclusive events during the small interval (¢,t + 6¢):
(a) The repairman does not come, then

X(t+6t) = { X(t) + A(6t), almost surely if X (¢) + A(6t) > 0,
0, almost surely if X (¢) + A(6t) < 0.
(b) The repairman comes but does nothing since X (t) > s, then
X (t+ 6t) = X(t) + A(6t), almost surely.
(c) The repairman comes and repairs the system since X (t) < s, then
X(t+6t) =S + A(st'), for some 6t' < 6t, almost surely.
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Thus, for z > 0,

F(z,t+6t) = (1—=2t)P{X(t)+ A(6t) <z} + A6tP{X(t) + A(6t) < z,
X(t) > s} + A6tP{S + A(6t') < =, X(t) < s} + o(61),

and for z = 0,
F(0,t 4 6t) = (1 — A8t)P{X (t) + A(t) < 0} + o(6t).
Now, for z > 0,

P{X(t) + A(6t) < =}
_ /"; F(z — y,t)dP{A(6t) < y}

; 1 5, &?
= F(e,t) ~ BIAG)]—F (2,t) + sE[{AE)}] 5 F (2, 1) + o(s0)

on performing a Taylor series expansion, assuming that -;;F (z,t) and %F (z,t)
exist. Substituting this expression into the above equation, rearranging and
letting 6t — 0, we have the following partial differential equation for F(z,t):

5 502%F(m,t) - uf—zF(m,t) — AF(z,t), for0 <z <s,
:’5‘—tF(z’t): %02%27F(m,t)—u%F(m,t)—)\F(s,t), fors <z <SS,
%ar"%ﬁ—F(x,t) - M%F(x,t), forz > S.

(2.1)

Since the origin is an absorbing state, it follows from Cox and Miller

(1965, p.219-220) that f(0,t) = ZF(z,t) |,—0= 0, for all ¢ > 0, which is a

boundary condition. Taking the ordinary Laplace transform of equation(2.1)
with respect to z yields

0 1 1
EFO(T’, t) = (5027*2 — ur)F°(r,t) — (5021* — w)F(0,t) — AF*(r,t)
A
+ZF(s,t) (e —e™™),
,

where F°(r,t) = [5° e " F(z,t)dz and F*(r,t) = f; e "*F(z,t)dz.
Solving the above equation with the boundary condition F°(r,0) = e ™5 /r
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gives

efvp{(w" - —0 “r?)u}

Fe(r,t) = ea:p{( or? — ur t}[
x{(—;—a r — u)F(0, u)+)\F (r u) — iF(.‘s u)(e™™ — e ") }du).

Since the Laplace-Stieltjes transform of F (z,t) with respect to z, F*(r,t) say,
satisfies F'*(r,t) = rF°(r,t), it follows that

F*(r,t) = ea:p{(%o'zr2 — pr)t}e ™ - /Ot exp{(pur — —;—027'2)11}
x{(:{lz—a2r2 — ur)F(0,u) + ArF*(r,u)
—AF(s,u)(e™™ — e ™)}dul. (2.2)

Equation(2.2) contains the terms F(0,u), F*(r,u) and F(s,u) which are still
needed to be evaluated, and this will be done in the next section.

3. A FORMULA FOR F(z,t), 0<z<s

In this section, we obtain a formula for F(z,t), for 0 < z < s, by using an
argument similar to that of Baxter and Lee (1987b). Consider the points at
which the state of the system crosses the threshold s for the first time after a
visit by the repairman. Since the exponential distribution is memoryless and
Brownian motion has independent increments, the times between successive
points are independent and identically distributed, and hence the sequence
of these points forms an embedded renewal process. Let T* be the generic
random variable denoting the time between successive renewals. Then

T __T+YU -8 (31)

where 2 denotes equality in distribution, T is an exponential random
variable with parameter X, U is the state of the system immediately after the
first visit by the repairman following the previous renewal and Y,_, denotes
the first passage time from a to b (¢ > b) in Brownian motion with parameters
g < 0 and o2

Observe that
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D { S, if Z(T) < s, (3.2)

U= Z(T), otherwise,
where {Z(t),t > 0} denotes Brownian motion with initial state s and

absorbing barrier at the origin, and hence the distribution function of U,V
say, is given by

V(z) = P{S<=z,Z(T)<s}+P{Z(T) < z,Z(T) > s}
I2{B(z,t) — B(s,t)}xe7Mdt, fors <z < S,
Is° B(z, t)xe™*dt, forz > S,

on conditioning on T, where B(z,t) = P{Z(t) < z}. An argument similar to
that of Cox and Miller (1965, p.220-221) shows that, for z > 0,

1 - B(z,t)
o 1 z—s— ut)? 2us (2 + s — pt)?
- / a(\/ﬁﬁ)[“”{—( 202tu) } - eon{-2; ( 202tu) 3

In summary, the distribution function of 7%, K say, is given by

K(t) = / / st — )Ae *?dV (u)dz,

where W, , is the distribution function of Y,_,. From Karlin and Taylor [6,
p.363], it follows that

u—3s (u— s+ pz)?

W, (t) = /Ot memp{——?&z;——}dm-

Let H denote the renewal function of the embedded renewal process, then

HO) = Weu(t)+ 3 Ws  KO(0),

n=1

where the asterisk denotes Stieltjes convolution and the superscript denotes
n-fold recursive Stieltjes convolution.

We now deduce an expression for F(z,t), for 0 < z < s. Notice that after
a renewal the state of the system follows {Z(t),t > 0} until the repairman
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visits and after the repairman’s visit the state of the system is over s until
the next renewal. Hence, for 0 < z < s,

Fo,t) = /Ot Bzt — w)e *"VdH (u). (3.3)

Equation (3.3) also enables us to evaluate the undetermined terms in equa-
tion(2.2), that is,

t
F(0,t) = /()B(O,t——u)e_’\(t_“)dH(u),
t
F(s,t) = /0 B(s,t —w)e*""dH(x) and

3 t
Fe(r,t) = /Oe_"/o B(z,t —u)e Y dH (u)de.

4. THE STATIONARY DISTRIBUTION

We now derive an explicit formula for the stationary distribution of X (t),
for the case where %F(w,t) = 0. Notice that this exists, since 4 < 0 and is
the same as the limiting distribution F(z) = lim_,«F (z,t)( c.f. Baxter and
Lee (1987a)).

Consider, firstly, the case when 0 < z < s. Applying the key renewal
theorem to equation (3.3) yields

1

F(z) = E_(E/Om B(z,t)eMdt.

Baxter and Lee (1987b) have shown that

92(A)601(A)(z—s) — 01()\)602(’\)“:—01(’\)’
Al02(A) — 01(N)] ’

where 6;()\) = (u + V2 T 230?)/0? and 85(\) = (k — Vu? + 2Xa?) /0.

From equation (3.1) and (3.2), it follows that

/0 ” Bz, t)edt = (4.1)

1 S

B(I") =5+ - %[SP{Z(T) < s} + E{Z(T) | Z(T) > s}P{Z(T) > s}].
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Again, from Baxter and Lee (1987b), it can be seen that
62(N) 0:1()\)

PUM) <o} = 5y 600~ 60 - 600 AT = a6, ), s,
(4.2)
and ,
zqzw}:s+ﬂt-uéznummh (4.3)

Conditioning on T' and making use of equations (4.1), (4.2) and (4.3), we
can show that

E{Z(T)| Z(T) > s}P{Z(T) > s}

— e g, (02(0) = (B:1(N))2elnd)-a Ml
=s—35q(s,A\) + 3 + RO

In summary, F(z), for 0 < z < s, is given by

F(z) = E&qﬁmBuﬁaﬂm

0N (N)e 1 {g(X)e2 Nz — gy(X)ef M=} (4.4)
N G(s,8,)) ’ '

where G(s,5,1) = A(S = 5)01(7)02(A){82(0) — 81(2)elfl2P)-01MVlsy
+)\(02()\))2 — )\(01()\))2e[02(’\)_01(’\)1".

We now consider the case when z > s. From equation (2.1), it follows
that

AF(s) = 1023‘%F(z) —uiF(z), fors<z<S$, (4.5)
0=10"%5F(z) — pLF(z), forz > S, (4.6)

The general solution to equation (4.6) is given by
F(z) = Cy + Cye®=/*,

for z > S, and by using the method of variation constants, we can show that
the general solution to equation (4.5) is given by
o

A
F(z) = Cs + C4e®*/”" — ZF(s)(z — 5) — —=F(s){1 - e2ulz=a)/o"y
H 2u?
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for s < z < S. To evaluate the constants C;,Cs,C3 and Cy4, we consider the
following four conditions:

(1) F(z) is continuous at z = s, i.e., lim,_,+ F(z) = F(s),

(2) F(z) is continuous at z = 3, i.e., lim,_s- F(z) = F(S),

(3) F(z) is differentiable at z = S, i.e., lim,_ s+ F'(z) = lim,_,s- F'(z) ,
(4) lim, . F(z) = 1.

An easy calculation shows that F(z), for z > s, is given by

1+ 2F(s)(S — ) = $3F (s) + {F(s) =1 = 3F(s)(S — 9)

Fl(z) +‘;p"F(s)} e2ulz=s)/0” for s <z < S,
T) =
L+ {F(s)—1-2 ( )(S = 5) + T3 F(s)}etul=m)e"
—ST}F() (xs/a forz > S,

where, from equation (4.4),

181 (N)02(A) {01 (A)e2 M- R)le — g, ()}

Fs) = G(s, 5, N)

The stationary distribution obtained in this section is illustrated in the
following figures for several cases.
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F(x)
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0271
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Figure 1. Stationary distribution when s = 5, § = 10, A = .5, ¢ = .25
and u varies.

F(x)
1 <+

10 12

Figure 2. Stationary distribution when s =5, § = 10, p = —1, o? = .25
and A varies.
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F(x)

Figure 3. Stationary distribution when § =10, A = .5, p = —1,0% = .25
and s varies.

F(x)
1+
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Figure 4. Stationary distribution when s =5, § = 10, A = .5, p = —1
and o? varies.
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