결정 성장 조절제를 이용한 침상형 $\alpha$산화철의 제조

Preparation of Needle-like $\alpha$-Iron Oxide Using a Crystal Growth Controller.

  • 변태봉 (포항산업과학 연구원 자원활용팀) ;
  • 손진근 (포항산업과학 연구원 자원활용팀)
  • Byeon, Tae-Bong (Research Institute of Industrial Science and Technology, Resources Utilization Team) ;
  • Son, Jin-Geun (Research Institute of Industrial Science and Technology, Resources Utilization Team)
  • 발행 : 1996.08.01

초록

결정 성장 조절체를 이용하여 수용액 중에서 직접 $\alpha$산화철을 제조하였으며, 염기도에 따른 생성물의 입자 특성과 반응기구, $\alpha$산화철의 생성 과정과 침상형 입자의 생성 반응 기구를 고찰하였다. pH 9.0이하에서는 hexagonalgudxo, pH 10.75-11.75범위에서는 ellipsoidal 또는 rectangular 형태의 $\alpha$-${Fe}_{2}{O}_{3}$입자로 각각 생성되었으며, pH12.50이상에서는 acicular 형태의 $\alpha$-FeOOH입자가 생성되었다. pH 10.75-11.75범위에서 제조된 생성물의 염기도는 결정 성장 조절제의 해리에 의해 생성된 수산기 이온(OH-) 때문에 반응물의 염기도에 대비해 약간 증가하는 현상을 나타내었다. 결정 성장 조절제로 사용한 구연상은 제이철 수산화물에 구연산 음이온(R-COO-) 형태로 흡착되어 생성물인 $\alpha$산화철의 입자 형태를 침상 형태로 유도하였다.

Iron oxide (hematite, $\alpha$-${Fe}_{2}{O}_{3}$) particles were prepared directly from aqueous solution using a crystal growth controller. Paticles properties and reaction mechanisum of products as a function of basicity, formation process and mechanism of needle-lkie hematite were investigated. hexagonal hermatite particles were formed in teh range below pH 9.0, ellipsoidal or rectangular hematite particles in the range of pH 10.75-11.75 respectively. In the range above pH 12.50, acicular $\alpha$-FeOOH was formed. Basicity of product solution produced in the range of pH 10.7511.75 was increased slightly as compared with basicity of reastants due to hydroxly ion(OH-) formed by dissociation crystal growth controller. Citric acid which is acted as a crystal growth controller was adsorbed in the form of itrate anion(R-COO-) on the ferric hydroxide and exerted important role on the formation to the needle-like $\alpha$-${Fe}_{2}{O}_{3}$ particles in this reaction system.

키워드

참고문헌

  1. 鐵と鋼 v.18 no.1035 伊藤俊治;遠藤一哉;牧克己;土阪彰
  2. 粉體およぴ粉末治金 v.26 no.131 加藤昭夫;石松宏之;陶山容子
  3. 粉體およぴ粉末治金 v.24 no.219 加藤昭夫;德永文傳
  4. 鐵と鋼 v.70 no.1758 小尾達郞;大久保武彦
  5. 化學と工學 v.37 no.817 高田利夫
  6. 粉體およぴ粉末治金 v.29 no.236 近藤正樹;中島信顯;平尺輝高
  7. Corrosion Science v.14 no.131 T. Misawa;K. Hashimoto;S. Shimodaira
  8. 住友重機械報 v.25 no.40 近藤正樹;中島信顯;渡部孝史;三木康平;平尺輝高
  9. J. Appl. Phys. v.53 no.3 G. Bate
  10. J. Appl. Phys. v.53 no.3 T. Sueyoshi
  11. Trans. Int. Congr Soil Soc. v.1 no.9 U. Schwertmann
  12. J. Colloid Interface Sci. v.102 no.1 M. Ozaki;S. Kratohvil;E. Matijevic
  13. U. S. Patent v.4 no.202 S. Matsomoto;T. Koga;K. Fuksi;S. Nakstani
  14. 特公昭 v.55 no.4694 松本淸治;小菓忠史;深井淸志;中谷信也
  15. 特公昭 v.55 no.22416 松本淸治;小菓忠史;深井淸志;中谷信也
  16. 特公昭 v.56 no.17290 松本淸治;小菓忠史;深井淸志;中谷信也
  17. Atlas of Electrochemical Equilibria in Aqueous Solutions(2nd ed.) M. Pourbaix
  18. Clay Minerals v.20 no.255 S. Mann;R. M. Cornell;U. Schwertmann
  19. Clay and Clay Minerals v.27 no.195 D. G. Lewis;U. Schwertmmnn
  20. South African Institute of Mining and Metallurgy Principle of Flotation R. P. King
  21. Encyclopedia of Chemical Technology(3nd ed.) v.4 no.827 K. Othner
  22. J. Amer. Chem. Soc. v.76 no.2111 R. E. Hamm;C. M. Shull;D. M. Grant
  23. J. Colloid and Interface Science v.75 no.1 J. Eisenlauer;E. Matijevic
  24. J. Colloid and Interface Science v.68 no.3 J. Rubio;E. Matijevic
  25. 工業化學雜誌 v.68 no.12 信岡聰一郞
  26. Colloid & Polymer Sci. v.258 no.10 R. M. Cornell;P. W. Schinler
  27. IEEE Trans. Magn. v.MAG-24 no.2 V. Arndt
  28. Polyhedron v.7 no.5 R. Giovanoli
  29. Clay and Clay Minerals v.23 no.33 W. R. Fischer;U. Schwertmann