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Threshold Digital Signatures based on Discrete
Logarithm

Choonsik Park

Abstract

This paper presents a (k,n) threshold digital signature scheme with no trusted dealer. Our idea is to use the ElGamal signature
scheme modified for group use. Among many digital signature schemes, our modification has a nice property for our purpose.
We also show a (k,n) threshold fail stop signature scheme and two (k,n) threshold undeniable signature schemes. We use [10]
as the original fail stop signature scheme, and use [3] and [2] as the original undeniable signature schemes. Since all these
schemes are based on the discrete log problem, we can use the same technique.

I. Introduction

The notion of group oriented -cryptosystems was
introduced by [4]. In a (k,;n) threshold public key
cryptosystem, the receiver is a group of n members such
that k£ out of n members must cooperate for decryption
keeping the decryption key secret. [5] showed a (k)
threshold ElGamal cryptosystem. In this system, a trusted
dealer was necessary. [13] showed such a public key
cryptosystem with no trusted dealer. [6] showed that a (k,n)
threshold digital signature scheme for RSA could only exist
with a trusted dealer.

On the other hand, undeniable signature schemes were
introduced by [3]. Unlike digital signature schemes, an
undeniable signature scheme consists of a signature issuing
phase and a signature verification phase. In the signature
issuing phase, a signer issues “an undeniable signature.
However, the signature cannot be verified without the help of
the signer. In the signature verification phase, a protocol is
executed between the signer and a verifier. The validity of
the undeniable signature is verified by this protocol. Group
oriented undeniable signature schemes were studied by [12]
and [11]. [12] showed how the signer can distribute a part
of his secret key to n agents such that any k of these. can
verify a signature. That is, only the signature verification
phase is group oriented. [11] showed an (n,n) threshold
undeniable signature scheme such that both the signature
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issuing phase and the signature verification phase are group
oriented. However, all n members must cooperate. How to
realize a fully (k,n) threshold undeniable signature scheme is
an open problem [11].

(k,n) threshold signature schemes with no trusted dealer
are not known so far for both digital signature schemes and
undeniable signature sche mes.

This paper presents (k,n) threshold signature schemes with
no trusted dealer. We first show a modification of ElGamal
signature scheme to make it suitable for group use. Our idea
is to use the modified ElGamal signature scheme as the
original digital signature scheme. Among many digital
signature schemes, our modification has a nice property for
our purpose. We use this modified scheme as the digital
signature scheme. We also show a (k,n) threshold fail stop
signature scheme and two (kn) threshold undeniable
signature schemes. We use [10] as the original fail stop
signature scheme, and use [3] and [2] as the original

undeniable signature schemes. Since all these schemes are

based on the discrete log problem, we can use the same
technique.

In a fail stop signature, the signer can show a proof of the
forgery if someone makes a forgery. In an undeniable
signature scheme, the signer’s cooperation is necessary to
verify the validity or the invalidity of a signature. This
scheme is useful to prevent illegal copy of software, for
example.

Group digital - signature schemes are important, for

. example, in the system of Kohnfelder’s public key certificate.

Let E, be the public key of Alice. In that system, a trusted
center gives the digital signature Sign(Alice, E,) to Alice. If
a dishonest center gives Sign(Bob, E,) to Alice, Alice could
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impersonate Bob to anj'one. Thus, we should distribute the
power of the signer.

II. Preliminaries

1. Fail Stop Signature Scheme [10] .

Let g, and g, be primitive elements of GF(p).
(secret key) $1, 82, 83, $4(0<s,<{p—1)
(public key)

(plaintext)

Y1(=glslgzsz), ¥, (= é.’]J s‘)
MEZ,-
(signature) (21, z2,), where

zp=8§+ms3 modp—1
. 22=52+ms4 modp—1

(verification)  y,y7= g2, mod p
(proof of forgery)

If an opponent forges a signature ( z,, z,), the signer.

shows (z;,z,). Even if the opponent is infinitely powerful,

(2),22)#( z,, 2z,) with overwhelming probability.

2. Undeniable Signature Scheme [3]

We use GF(p) such that p-1 is divided by a large prime
. q. Let G, be the subgroup of GF(p)" of order g and let g

be a generator of G,.

(secret key) s(0<¢s<q—-1)
(public key) y(=g)
(plaintext) meG,

(undeniable signature) z (= m")
(confirmation protocol)
Suppose that z is valid. The signer P proves this fact to
a verifier a by executing the following confirmation protocol.
(step 1) V randomly selects two integers a and b from
Z,, and computes

w=2°y".

w is sent to P.
(step 2) P computes

R=w’
where s 7! is the multiplicative inverse of s mod q.
R is sent back to V.

(step 3) V checks whether

R=m"g" 1)

If this equation is satisfied, the signature is valid.

(disavowal protocol) ‘
Suppose that z is invalid. P proves thi§  invalidity by the
following protocol.
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(step 1) V randomly selects two integers a and b from
- Z, and computes
w=2z2"y".
w is sent to P.
(step 2) P computes
R=w*"
R is sent back to V.
Eq.(1) is not satisfied in this case because z is assumed
to be invalid.
(step 3) V randomly selects ¢ and d, and calculates
‘ w = 2%y% '
w’ is sent to P.
(step 4) P computes
R=w"".
R’ is sent back to V.
(step 5) V checks whether
(Rg )°=(Rg™™"
The equality means that P is answerjng consistently
and the signature z is invalid.

3. ZK Undeniable Signature Scheme [2] '

We use GF(p) such that p-1 is divided by a large prime
q. Let G, be the subgroup of GF(p)* of order g and let g
be a generator of G,. Let g be a primitive element of GF(p).
s (0<s¢q—1)

(public key) y(=g) .
(plaintext) me G,

(secret key)

(undeniable signature) z (= m®)
(confirmation protocol)

(step 1) A verifier V chooses a and b at random from
Z, and sends c¢=m“g® to a signer.

(step 2) The signer P chooses r at random from Z, and
sends h;=c - g” and hy=4h to V.

(step 3) V sends a and b to P.

(step 4) P checks whether ¢ is constructed properly
using a and b. If the check is successful, P reveals
rtoV. ‘ ' '

(step. 5) Using r, y and z, V checks £,’s validity and
whether

(disavowal protocol) - '
(step 1) V chooses t={0,-,k} and a=Z, inde-
pendently and uniformly. Then .V computes
A=m'g®, B=z""
and sends them to P. '

(step 2) (1) P determines the value of ¢ by trail and
error. An efficient approach for this raises the
first component A of the message to the s power
and forms a quotient with the second component
B. The k+1 trial quotierits can then be computed
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each by a single multiply from the quotient of
the valid signature with z.
(2) P sends blob(r,) which is a commitment of
t using random number r.
(step 3) V sends a to P.
(step 4) P checks that a can be used to reconstruct the
first message. After that, P provides r to V.
(step 5) V reveals ¢t from blob(r,) using r and checks
whether it is identical to the one he chose at step 1.

4. Secret Sharing Scheme

1) Secret Sharing Scheme and Lagrange Interpolation
Formula '

In a (k,n) threshold scheme, a secret s is divided into
"shares” v, -, v, in such a way that
(@) ény k shares are sufficient to efficiently reconstruct s
and
(b) any k-1 shares provide no more information about the
~ value of s.
Shamir’s (k,n) threshold scheme[14] is as follows:
seg(1,2,-, S}
1. A dealer(D), whose secret is s, chooses a prime g
such that ¢ = max(S,n+1).
2. D chooses at random a polynomial f{x) of degree at
most k-1 such that
Rx)=fo+ fiet-+Ffomx " modg
where f(0)= f;=s.
3. D gives »;= R to a participant P; for 1<i<n.

Let

Let {i -, ic{l,-,n}. Ax) is reconstructed from
v;,,v; by using Lagrange interpolation formula as
follows.

L .
An=2 T v, moda. @
7=1 Anot=; 1;—j
Then s can be computed as follows.
k
S=ﬂ0)=§1ijii mod g 3)
where
I —1
b; 2 Hicij—i, mod g. @)

2) Non-Interactive Verifiable Secret Sharing

In a (k,n) threshold scheme, if the.-dealer does not
distribute the correct {»;};-,..,. k participants cannot
obtain the secret s. Therefore, the dealer is sometimes
required to prove in zero-knowledge that {v;},., .., is
correct. Such a protocol is called a verifiable secret sharing
scheme (VSS). [8] showed a non-interactive VSS. [13]
modified it slightly. We show a further modification of [13].

(1) D publishes GF(2") such that 2"7'=g4, where ¢ is a

prime. He also publishes a primitive element g of
GF(2".

(2) The dealer D executes the Shamir’s (k) threshold
scheme (see 2.4.1). .

Hereafter, calculations are executed over GF(2").

(3) D computes F; 2 g” for j=0,1,*+,k—1. D publi-

cizes {F;} ;-1 k-1-
(4) Note that

L B Ly
H F,‘ = H g’
=0 =0

ST
—EE”“fﬂ q

:gl(x)

vi
= g .
The second line comes from the fact that g'=1.

k-~ " ; .
P, verifies that _H:)F,»' — g". If this check holds, P;
I

is convinced that his share is certainly f(i).
3) How k out of n Share Holders Compute ao° over
GF(2n)
Suppose that everyone agrees on GF(2") such that
2" 1= g4 where q is a prime. Suppose also that P; has v,
as his share for a secret s (1 < i < n) (see 2.4.1). On
common input A, any k members P;,---, P, can compute
A° over GF(2") without revealing s(and v;) as follows.
Each P, computes A" over GF(2") and broadcasts it

( b; is defined by eq. (4). Then each P, can compute
k b k
Hl/l = AE b ; modg
i= T=1

=A° over GF(Z").

III. Related Works

1. Undeniable Signature Scheme with Distributed Provers

Pedersen [12] showed how the signer of undeniable
signatures can distribute part of his secret key to n agents
such that any k of these can verify a signature. His scheme
is based on Boyar et al.’s convertible undeniable signature
scheme [1].

Convertible Undeniable Signature Scheme:

Convertible undeniable signatures are particular undeniable
signatures which have a nice property that the signer can
convert all the undeniable signatures to ordinary signatures
by releasing a part of the secret key, and selectively
convertible undeniable signature allows the signer to convert
only selected undeniable signatures to ordinary signatures
without affecting other undeniable signatures. Let p and g be
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large primes that g divides p-1, and g be a generator of the
subgroup, G, of Z, of order g.
(secret keys) x, ze Z,'
(public key) (p,q,g2,y, w), where y= g and u= g mod p
(plaintext) “m
(signature) (g, 7,s),
where (r,s) is the ElGamal signature on
M=g'tzm modq. That is, gM= "7
(verification)
Given m and (T,s), both the signer(S) and the
verifier(V) can compute w= T7™ and p=y"»
(step 1) V chooses az,b< Z and sends ch= w2’
(step 2) S chooses r=Z and sends s,=ch” and
hy= hi.
(step 3) V sends a and b.
(step 4) S verifies that ch= %"
successful, S sends r to V.
(step 5) V verifies that &, =(w’g%” and hy,=(v°u®
~ The signer can convert all his signatures to ordmary
signatures by releasing z. Alternatively, a signature (T,r,s) on
the message m can be converted to a digital signature by

If the check is

releasing ¢ such that 7=g' Given 7, a signature can be
verified -as follows: -

1. Verify that T=g"

2. Verify that (z"")'=y"".

Distributed verification:

Consider the case where: the signer S have signed the
message m using the random exponent z. That is, the
-signature on m is (T,r,s) where T=g' and (r,s) is the
ElGamal signature on Ttzm bmod g. S distributes the ability
to verify this signature to n agents P, -, P,.

(step 1) S broadcasts T to the n agents.

(step 2) S distributes ¢ using Shamir’s secret sharmg
scheme. Thus, P; gets the share ¢;=f(x;), where f
is a polynomial over Z, of degree k-1 such that
f0)=1.

(step 3) S sends H(m,r,s) to each agent, where H is a
- collision-free hash function. After the execution of
this protocol(Before executing step 3, each
participant must verify his share.), each P; has a

secret share ¢; with corresponding public information
h,'= g h. . )
When a person V asks k agents (say P,--:,P,) to verify
a signature (T",r’,s’) on a message m’, these k agents must
check that it is the one they should verify. Let «,--,a,

satisfy the next equation.
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(step 4) V and each P; verify thziit
=11 n
If this equation fails, they cannot neither verify nor
deny the signature.

(step 5) Each P; checks that the signer has sent
H(m’,r’s’). If this is true, the agents agree to verify
the signature and otherwise they tell V that they are
not able to verify it. '

Next, P, -,
protocol.

(step 6) P; and V compute w=#" and »=y” »°.

P, verify a signature by executing next

(step 7) V chooses a,b=Z and sends ch=w"g".

(step 8) P; chooses r,=Z and sends h,=ch” and
ho=hj.

(step 9) V.sends a and b.

{step 10) P; verifies that ch= w“g".
successful, each P; sends 7, to V.

If the check is

(step 11) V verifies that % ,=(w’g?) " and that

k ;
M=

(step 12) V accepts the signature if and only if it
accepts the proof.

2. (n,n) Undeniable Signature Scheme

An (n,n) undeniable signature scheme was shown by [11].
In this scheme, a signer is a group of n.members A A,
Each role of the signer is played by the cooperation of all
n members.

Set Up Phase:

(1) Some member A; publicizes a large prime p and a

primitive element g of GF(p).

(2) A, (1<i<n) chooses x; such that gcd(x;, p—1)=1.

x; is 'the secret key of A,

Public Key Generation Phase:

The group public key is given by p,g and y such that

y= 7=, x; modp.

By the following protocol, {A;} i:[,...,;,
cooperatively while keeping «x; secret. We use a convention
such that  A;=A i moa m A4 Y=Y (i mod m.0-

(step 1) Each A, calculates

compute y

yii=g" bmodp .
and transmits this value to A ;.
(step 2) For t=2 to n-1,
each A, receives y, ;,, from A, and uses his
secret key x; to compute
Viem Vicg-) ™ mé)dp..
The result y;, is transmitted to A ..
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(step 3) Each A; receives y,,,, from A, , and

computes

Vin=is1 1) *  modp.
Then each A, opens y,, to all group members.

(step 4) Each A; checks that all y;, (j=1,-,n) are

equal.

If so, y is given by

y=y1a=""=Ynn= gll 1=12; modp.

y is published.
Signature Issuing Phase:

For a message m, the undeniable signature Z is defined

Z= Il =1x; modp.
{A)} i=1..., computes Z cooperatively as they do in the

group public key generation phase.
Confirmation Protocol: .
From the confirmation protocol of 2.2, we see that

w(H ’:'=lxi) - mOdp
for verifier’s challenge w. Now, because

w( il-=lei) ! mod =y ‘1-=lei_l mod b,

{A;} i=1... » have only to calculate

this calculation is executed as in the group public key
generation phase, using {x,”'};—, .., instead of {x;} ;=\ .. .

1

where x;7' is the multiplicative inverse of x; mod p-1.

The disavowal protocol is similar.

IV, Framework

1. Outline

All signature schemes shown in section 2 are based on the
discrete log problem. Each scheme has a public key of the
form y=g*. In this paper, for each of the schemes, we show
a group (k,n) threshold signature scheme such as follows.

(1) We denote by P,,--,P, a group of n signers.

(2) No trusted dealer is necessary.

(3) Al members agree on GF(2") and g, where
2"} 2 4) is a prime and g is a primitive element
of GF(2"). Instead of GF(2"), we can use GF(p) such
that p-1 is divided by a large prime q. In this case, let
G, be the subgroup of GF(p) of order g and let g be
a generator of G,.

(4) Each of the propbsed schemes consists of a public key
generation phase and a signature issuing phase. In the
public key generation phase, all n signers must
cooperate. In the signature issuing phase, any subset of
k signers can issue a signature but k-1 signers can’t. In

signature  schemes, (k,n) threshold
confirmation protocol and (k,n) threshold disavowal

undeniable
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protocol are also shown.

In the next subsection, we show a public key generation
phase which is commonly used in all our group signature
schemes. In the public key generation protocol, y(=g°) is
produced as a public key so that nobody knows s. Each P;

obtains v ,(=fi) mod q) secretly, where fix) is a random
polynomial of order k-1 such that fl0) = s mod gq.

2. Public Key Generation Phase
Let C(u,r) denote a commitment of #, where r is a random
number.

(step 1) P; chooses x,=Z, at random and computes
y;=g" over GF(2") . Then a random string 7; is
chosen and .P; broadcasts C; 2 C(y;r;) to all
members.

(step 2) After all n signers have broadcast the
commitments, each P; opens C,

(step 3) The public key y is computed by

T
over GF(2").
Let
s 2 2x;, modg )
Then,
y=g° over GF(2") (6)

It is clear that nobody knows s.
Next s is distributed to P,,--,P, in a (k,n) threshold
scheme sense.
(step 4) P; chooses at random a polynomial f(z) of
degree k-1 over GF(g) such that

fi(0)=xi- (7)
Let .
fA=Fiotfizt+Ffiez*!
where f;,=x;
(step 5) P; computes F,,=g’” over GF(2") for
j=0,,k~1 and broadcasts (F;,);—, .. 41
(step 6) After every signer have sent these k-1 values,
P; sends :
s, =1 ' ®)
secretly and a signature on s;; to P, for j=1,-,n.
(step 7) P; verifies that the share received from P,
(S;,) is consistent with the previously published
values by verifying that

k=1
gh'= tlloF;'I over GF(2").
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If this fails, P, broadcasts that an error has been
found, publishes s,; and the signature (since P,
falsely claims to have not found the error) and then

stops.
(step 8) P; computes his share of s, v, as the sum of

all shares received in step 6:

vi= 235, modq ®
£
lemma 4.1 In the above protocol
D y=g°
(2) v;=£Ri) for some polynomial f{z) of order k-1 such
that f{0)=s.

proof 1 (1) is clear. _
(2) Let fbe Rz)=f(2)+ - +1,(2). Then, f0)=s from eq.
(5) and eq. (7). From eq. (8) and eq. (9), =»:=f3).

V. Proposed (k,m) Threshold Digital
Signature

1. Modified ElGamal Signature Scheme

We first modify ElGamal signature scheme [7]. This
modification is very suitble for our purpose, cooperation
based signature schemes.

Let g be a primitive element of GF(p) and p-1 has a large
prime factor. Let & be a one-way hash function.

(secret key) s (O<s<p-1)

(public key) =g

(plaintext) m

(signature generation) Choose r=Z, | at random]}.

Let e=g” mod p.and z=h(m)*r-se

mod p-1.

(h(m) = 0, p-1/2).
(digital signature) (e2) -
(verification) "™ =g*y* mod p

2. (k,n) Threshold Digital Signature Scheme

In this section, we show the signature issuing phase of our
group digital signature scheme. The underlying digital
signature scheme is the modified ElGamal scheme proposed
in 5.1. (It should be noted that a group fail stop signature
scheme can be obtained in a similar manner to the group
digital signature scheme by using [10] as the underlying fail
stop signature scheme.) _

It is clear that k-1 signers cannot issue a signature because
s is distributed to n signers by a (k,n) threshold scheme in
the public key generation phase. We show that any k signers
can issue a signature. Suppose that P;,-- P, issue a

signature for a plaintext m.

(step 1) Each P, computes x ,-(=| g over GF(2™),
|

where »; is a random number, jand broadcasts «x ;.

(step 2) Let '

'

e B xpex, (= 7). 10)

(step 3) Each P, opens z; such that

zj= h(m)r;—ebv ;, (modg), (11)

_l'[

where 5; ° mod (. Remember that

i 1,—1,
v;=Ri,) (see lemma 4.1).

(step 4) Let z=2,+--+z, mod q:
The group signature is (e2).

lemma 5.1

o™ = gy’ ‘ (12)
proof 2 fix) is reconstructed from 4, ,--,»;, by using
Lagrange interpolation formula as follows [5].
L1 - x—i,
A=2 II =—v; modg. 13)
1=1 hnot=j i, ’ :

Then s can be computed as follows. -

. <
s=A0)= ‘21 bv;, modg (14)
i= >

Now,
z =z;++z,
=2 m)r;—ebp;)
=hm)(X7r)—e(Xbw;)
=h(m)(Xr)—es
Therefore, g*=g"™=" g=s=pHm) ¢ from eq.(10) and
lemma 4.1.
The verifier verifies eq. (12).-

VI. Group Fail-Stop Signature Scheme

In this section, we show the public key generation and the
signature issning phase of a group fail-stop signature scheme.
We use the scheme of [10] in 2.1 as the original scheme.

Public key generation phase: -

(step 1) Each member P(i=1,2,::-,n) selects his
private secret s,;,sq,ss and s,; randomly.

(step 2) P; broadcasts y;=gi"g;" and y,=g1"g;".
Then, all members compute the product of these
values.

The generated public keys (y,, v,) are as follows.

n
Yy = LIIYJi= > 7:1811‘2, =182

i
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Y= ,,I;[l}’z.: g Elsaig, ?;-—‘134,'-
Each member shares s [/=1,2,3,4) by using step4 ~ 8 in
4.2. Here, s, 2 éls,,-.
Signature issuing phase:
Suppose that the share of P, for s, be ¢,/i=1,2,3,4)
and P,,-- P, issue a signature on a message m.
(step 1) P; computes
2 ;= (t1,~+mt3,-)b,~ mod 17“‘1
22,»=(t2,-+mt4,-)b,- mod D—l
where & is Lagrange constant. Then P; opens them.

(step 2) The group signature (z,,z,) is as follows:

k
z) = 22y
=1

k k
= ,.Z-"lbftli"" Z}lmb;t3;=sl+m53
k -
2y = 2 2y
i=1
k k
= iz=:lbit2’l+ i=lmb,-t4,~=82+ms4

VII. Group Undeniable Signature
Schemes

1. ZK Group Undeniable Signature Scheme

In this subsection, we show how to convert the zero
knowledge undeniable signature scheme [2] in 2.3 to a (k,n)
threshold version. For simplicity, we show the signature
issuing phase only. The group confirmation protocol and the
group disavowal protocol are derived easily. For a plaintext
m, any k members P, -, P, can compute the signature
z=m' over GF(2") without revealing s as follows.

Each P, computes m """ over GF(2" and broadcasts it.

Then everyone can compute
L1 by,
;‘I;Ilm = mz l;'=lij,-,modq
=m’( from eg. (14).)

2. 2 Move Group Undeniable Signature Scheme

It is not easy to convert a 2 move undeniable signature
scheme of 2.2_to a (k,n) threshold version. At step 2 of the
confirmation protocol in 2.2, the signer P must compute
R=w"" (not w®). When each P, has a share of s, it is
easy for k out of n  share holders to compute A°
cooperatively. However, we don’t have such an efficient

multiparty  protocol for computing A°". To avoid this

problem, we modify the confirmation protocol so that P

computes R=w*® at step 2. The modified confirmation

protocol is as follows.
(step 1) V randomly selects two integers a and b, from
Z,, and computes

w= mg®. 15
w is sent to P.
(step 2) P compﬁtes
R=w".
R is sent back to V.
(step 3) V checks whether
R= zayb_
If this equality holds, the signature has been verified.
The disavowal protocol is modified similarly. Now, a (k,n)
threshold version of this protocol is obtained by using the
same method in 7.1.
1) Security
Next, we show the security of the proposed scheme.
The signers’ fraud are the following two cases.
(1) For the invalid signature, the signers convince the
verifier that it is valid in the confirmation protocol.
(2) For the valid signatare, the signers convince the -
verifier that it is invalid in the disavowal protocol.
It is easy to see Proposition 7.1.

proposition 7.1 There exist q pairs, satisfying eq. (15),
(ay,b), =, (a,, b,) where a;#a;, b;#+b; for i#j.

Hereafter, calculations are executed over GF(2"). Let

L(w) 2 {(a, b)|w=mg"

proposition 7.2 If Z# m*, (a;, b)sl(w), (a;,b) €L(w)

angi (a;, by# (a;, b)), then
Z% b,v:/:Za,yb,-‘

Proof 3 Since 2" '=g4 and ¢q is a prime, Z=m* for
some x #x if Z+# m* over GF(2"). From the assumption,
we have _

(16)
a;~a; _ _bi~b
m =g

Suppose that

Za,-y b; _ Za,-y b,-‘
Then, we have

(m*) (&) "= (m*) "(g" ",
an

(m ﬂ."ﬂ,) x (gbi_b.')x.

From eq.(16) and (17),
(" =1
Because of b;# b, x=x". This is a contradiction.
Theorem 7.1 Even if signers have unlimited computing
power, the probability providing a valid response for an

invalid signature is at most —(11.
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proof 4 We can regard S( 2 (A4;,,A;)) and V as

two probabilistic Turing Machines. Let ¢, ¢t random tapes
of S and V, respectively. ¢, is used for (a,b) and ¢ is used

to compute R. Then we prove that VS, Vp, Vg, Vy, Vm,
V' Z (invalid signature for m)

Pr[ S provide a valid responsel S—lq— . (18)
ts. ty

At first, we define #, as follows:
ty 2 {tetyl V(DeL(w))},

where W(f) is V’s selection of (a,b) when it uses ¢ as its
random tape. Assume that
Pr[ S provide a valid response] >—1
ts, by
Then 3Jtgets such that

Pr[ S provide a valid response] >'—
ty

Because a honest V selects (a,b) randomly,
Jtg, Pr[S provide a valid response] >—1-
L(w)

From Proposition 7.1, |L(w;)|=g¢: So, this means that
there exist two pairs (a;, b;), (a4, bp)= L(w;) such that if S
send a response R, corresponding to tg, V accepts K, in
both case that V selects (a)',b]‘) and (a,,,bk). This
contradicts Proposition 7.2. That is,

Pr[ S provide a valid response] L .
ts, £ e

We can show this for all i(=1,:--, g), so (18) is proved.

Theorem 7.2 Even if signers have unlimited computing
power, the probability that the signers can disavow the valid

1

51gnature is at most —q

proof 5 In the disavowal protocol, V checks whether
(Ry ) =(Ry ™"
That is, in order to disavow the valid signature, the signers
have to send R’ such that
R ={(Ry ") *}y"
Suppose that in the worst case, the signers have known the
values of @ and b. Then (Ry %) Y is known to the signers.

So, if the signers can send such a response R* with a

probability better than —}1, it contradicts Theorem 7.1.

Remark 1 In 7.2.1, we showed only the security of the
signer’s fraud of the modified scheme. However, since
Chaum’s 2 move undeniable signature and the modified
undeniable signature scheme are not zero-knowledge([9],
malicious verifiers can generate undetectable forgeries of
signer’s signature. Thus, ZK scheme {2] must be used for
undeniable signature.

VIII. Conclusion

In this paper, we have shown (k,n) |threshold signature
versions based on the discrete logarithm problem: a threshold
digital signature, a threshold fail-stop "signature and two
threshold undeniable signatures, respectively. Furthermore,
we have presented a modified ElGamal signature scheme to
make it suitable for group use.
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