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Object Boundary Detection Using An Optimal
Data Association scheme

Jung-Gu Kim and Hong Jeong

Abstract

In target tracking area, the data association plays an important role and has been studied extensively. In this paper, after
defining the data association as a constrained optimization, we introduce a new energy function and thereby an efficient

realization of neural networks.

As an application, this algorithm is used to detect object boundaries in IR images. The problem is that the IR image noisy,
the shape of the object is variable, and the positions of the end points are not predictable. The performance of this algorithm

is discussed with the experimental results.

I. Introduction

The primary purpose of a multi-target tracking system [1],
[31, [71, (8], [9], [10] is to track as accurately as possible
the moving target, guided by some data measured in the field
of view. Naturally, the performance of this system is prone
to errors such as the clutter, false detection, missed target,
and uncertain target location.

Recently, Sengupta and Iltis [8] successfully used the
constrained minimization technique to compute posterior
probabilities in JPDA(Joint Probabilities Data Association).
According to this schéme, the posterior B} (for j=0) is the
probability that measurement j originates from target .
Similarly, B/ is the probability that none of the received
measurements originates from target z. They proposed
Hopfield network to approximately compute the g and
called this scheme NNPDA(Neural Network Probabilistic
Data Association). In particular, g} is approximated by the
output voltage X! of a neuron in an Nx(T+1) array of
neurons, where N and T are respectively the number of
measurements and the number of targets.

However, the energy function in [8] is inefficient [7] in
that it does not adopt the full advantages of the natural
constraints. Since the value of B} in the original JPDA is

inconsistent with X | of [8], these dual assumptions of no
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. two returns from the same target and no single return from

two targets should be used only in the generation of the
feasible data association hypotheses, as pointed out in [1].
This resulted from misinterpretation of the properties of
JPDA which the network was supposed to emulate.

We propose a new neural network scheme which reflects
better the natural constraints of the multi-target tracking
problem [6]. As an application to computer vision, we
applied the algorithm to the detection of object boundaries in
IR image. Especially each image contains one thick plate that
is obtained in front of the steel mill. The shape of the steel
plates are variable depending on the rolling conditions.

The organization of the rest of this paper is as follows.
In § II, we define the data association as a constrained
optimization and as one of optimal solutions we suggest a
MAP estimate. The various energy terms in the posterior that
is used in the MAP are derived in § III. A neural network
is derived in § IV, that efficiently converges to a minimizer
of the energy function. In § V, we apply this algorithm to
detect object boundary in infrared image. Finally, in § VI
we showed experimental results.

II. A MAP Estimate for Optimal Data
Association

Suppose that there are T targets and N number of
measurement data in some appropriate gates at some time
instance. The problem is that when a set of measurement
data is received, it has to be determined that which



28 KIM AND JEONG : OBJECT BOUNDARY DETECTION USING AN OPTIMAL DATA ASSOCIATION SCHEME

measurement is to be associated with which target. The
relationships of these measurements and targets are the
problem of multiple target tracking which is best described
by Nx(T+1) validation matrix(3]
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The elements of the validation matrix are bound between
0 and 1: @ ;=1 if the ith measurement originated from the
Jjth target or object boundary, and ;=0 otherwise. And the
first column of this matrix is considered as false detection
and others as targets. All rows are regarded as measurement
data. .
An example of typical measurement data distribution
within two different gates of two targets is shown in Fig. 1.

Fig. 1. The distribution of measurement data within two
overlapping gates.

In this figure, x; and y; represent the .center of the
validation gate[3] for the ith target and the jth measurement,
respectively. Measurements y,, y, and y; are data for the
first target and 3, y,, y; and y; for the second target.
Generally, a set of gates can be overlapped if there is at least
one common measurement in their scopes.

For the purpose of solving the problem of a large number
of measurements and targets, one must find the data
association matrix. The data association matrix for different
gates and measurements can be formulated based on the
validation matrix (1). In the case of Fig. 1, one of feasible
candidate data association matrices is
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This means that the measurement y, must belong to the

first target, y; to the second target and others to the clutter.

The generation -of the association matrix leads to a
combinatorial problem where the number of data association
hypothesis increases exponentially with the number of target
and the number of measurement. We consider that the task
of finding this feasible association matrix is a constrained
optimization problem. And we define this problem by the
MAP estimation formula:

Given z2=(y,x, @),
find o', ~ )]
suchthat o = arg max ,X @, al2),

where y, x, and @ respectively represent measurement data
in a validation gate, center of the gate, and initial validation

matrix. And P(-) denotes a posterior pdf and " is an
optimal estimator of « for the given z.

III. Determining ]Elrnelrgy‘ Functions for
the MAP

To solve (3), we need an exact represeﬁtation of the
posterior probability. According to Bayes rule, the posterior
becomes
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. All the pdfs in (4) are assumed to have the Gibbs
distribution[2]: © 1 .
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Here Z,, Z,, Z; and Z, are all partition functions. And
k, v and E( -) denote a temperature constant, Boltzmann
constant in thermal dynamics for controlling the convergehce
rate and energy function, respectively.

We assume the following properties for the energy
function:

E(dly, x, )= E( @lo) + E(y, 40) + E(). ©

The first term E(@lw) in (6) denotes the matching
relationship between initial association matrix and optimal
association matrix, and their distance is usually modeled by
a Gaussian distribution. The second term FE(y, xlw) stands for
the relation between measurement data and the center of the
gate of object boundary at some time instance with the given
optimal data association matrix. And the last term FE(w) has
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the meaning of prior knowledge of the association matrix
itself.

The energy for the first term therefore can be represented
by
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where ¢« is a constant.

Now let’s consider an arbitrary trajectory with data y;
within validation gate as shown in Fig. 2.

Fig. 2. Distance between measurement data and trajectory.

In this figure x; denotes the center of the gate of target
trajectory or object boundary estimated at previous time step.
Using simple vector operation, the direction of arbitrary
trajectory and perpendicular distance between data and the
trajectory can be calculated. Here, we assume that the energy
for measurement located close to the trajectory has to be low
than that of data located far from the trajectory.

Therefore the energy function for the second term can be
defined as
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where x; and y; are respectively the x and y components
of the measurement, x; and y; are respectively the x and y
components of the center of validation gate, and g is a
constant.

Only one measurement data must be associated with a
specific target at each time. Therefore the energy must be
low for only those solutions that produce a single 1 in each

column and a single 1 in rows from the second column in
association matrix. That is,
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The following energy function satisfies these constraints:
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Here, the parameters A and y are constants.
Substituting (7), (8), and (10) into (6) yields
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IV. Minimizing the Energy by Neural
Network

Given the total energy (11), we will derive an efficient
solution that uses Hopfield network[5]. A Hopfield network
which has Nx(7+1) neurons has the following energy
function.
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where w;, is the connection weight between ikth neuron
and jith neuron and I is the external input to the ijth

neuron. To find the connection weight and the external input,
we rearranged the energy function as
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where 2 2 Z 122:(18,7,8,‘1(1“80,‘) Wy Wy and AN+7T are

constant.
Comparing (12) with (13), we can obtain the value of the
weights and inputs:

w = —2{ad 40 ;{1 ~8¢;) A8+ 78 ;A1 =8},
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(14)

Based on (14), we can draw the overall architecture of
Hopfield network as in Fig. 3. In this figure, the inputs for
the first column of neurons are

Iy=24, 15)

and inputs for others are

(xiy, = %3,

2
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i) = 2@ @ ;—f x?_*_y? +2(A+7) (16)
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Fig. 3. Hopfield neural network architecture for data
association. ‘

Notice that there is no connection in the vertical direction
of the first column. However, the neurons on the same rows
and columns are connected so that they may inhibit each
other. All the neurons receive inputs that contain.observation
data.

V. Application to Boundary Detection

So far, we have derived a neural network that solves the
data association problem. In order to apply this algorithm to
boundaxy detection, we consider the boundary as target and
the edges as measurement data. Then, the overall boundary
detection system becomes Fig.4 that consists of acquisition
and tracking system. ‘

The operation is as follows. At first, the acquisition system
provides some starting points. Then, the tracking system
searches for the next point of the object boundary. To
accomplish this task, the tracking system first predicts,
usually by Kalman filter, the region that may contain the
candidates of the next boundary points. Within this region,
called gate, boundary points must be obtained by some
operators-of edge detection. After then, the data association
system chooses one of the measurement data as a boundary
point. The loop repeats until some - termination: condition is
reached.

This process was shown in Fig.5.

Starting from the initial site (denoted by a filled square),
the Kalman filter predicts a gate whose center is denoted by
a 'Cross.

fmage
: Data

Association

Acquisition

A
Q X, Y, Q

Data
Filtering

Tracking

‘ Object Boundary

Fig. 4. A boundary detection system.

Measurement data Center of pate

FeY - N
Initial Chosen data by the data associator

point Track
Fig. 5. An example for boundary detection.

Within the range of the gate, we obtain some measurement
data of the image that possibly denote boundary points. In.
this paper, we used a Sobel edge operator [4] for providing
the measurement data. Among the many measurement data,
the purpose of the data associator is to choose only one as
a boundary point. Starting from the newly chosen point, the
Kalman. filter predicts another gate. As a result of the
iterative process, a track represented by a solid line is
obtained.

VI. Experimental Results

To test our algorithm, we applied it to two test IR images
that contain hot plates. The infra-red image is like an
ordinary gray scale image other than that it is relatively free
from background noise. The goal of this experiment is to
detect the upper and lower boundaries of the plate that can
be used later for calculating curvature of the plate by means
of some curve-fitting method.

The 210 X 550 test images which have been taken from
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mono CCD camera and IR bandpass filter with 1050 nm
center frequency are shown in Fig.6. Each image contains
one hot plate that is over 750 °F.

(@
Fig. 7. (a) and (b) 3-D views of the test images, and (c)
®) and (d) edge images (sobel with threshold 30).

Fig. 6. (a) and (b) 210 X 550 two test images of hot plate. The results are shown in Fig. 8.

The upper and lower boundaries obtained by the proposed

The 3-D views and the binary edges of the test images are method are shown with the original images.

shown in Fig. 7. The edge images are taken using Sobel Notice, the upper and lower boundaries are correctly
operator with threshold 30 and used as input measurements detected.

of data association system. Notice that the boundaries are
very smooth, thick and very noisy. .

Fig. 8. (a) and (b) upper and lower boundaries of the
test images.

Y1I. Conclusion

In this paper we introduced an algorithm for object
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boundary detection that consists of data association and
tracking filter. We applied the basic concept of data
association technique proposed in the field of multiple target
tracking to detection of object boundary. After defining the
data association as a constrained optimization, we introduced
a new energy function and thereby a Hopfield neural network
as an efficient method for solving the energy function. The
new algorithm was tested for finding object boundaries in IR
images.

References

{1] T. E. Fortmann, Y. Bar-Shalom, Tracking and Data
Association, Orland Acdemic Press, Inc., pp. 224,
1988.

[2] J. E. Besag, “Spatial interaction and the statistical
analysis of lattice systems,” J. Royal Statics. Soc., Ser.
B 36, pp. 192-236, 1974.

[3] T. E. Fortmann, Y. Bar-Shalom and M. Scheffe,
“Sonar tracking of multiple targets using joint
probability data association,” IEEE Journal of Oceanic
Engineering, Vol. OE-8, No. 3, pp. 173-183, July,
1983.

© %% Jung-Gu Kim was bom in Jin-Ju
N | Kyoung-Buk Korea, in 1964. He
| received the B.S. degree in the
2 Department of Electrical Engineering
* from the Kyoung-Buk National Univ-
| ersity in 1991, and the M.S. degree in
-1 the Department of Electrical Engineer-
: ing from the Pohang University of
Science and Technology(POSTECH) in 1993. Since 1993, he
has been working towards the Ph.D. degree in the Electrical
Engineering from POSTECH. His research interests are
computer vision and digital image processing.

[4] R. C. Gonzalez and R. E. Woods, -Digital Image
Processing, Addison-Wesley Pub., Inc., 1992.

[5] 1. J. Hopfield and D. W. Tank, “Neural computation of
decisions in optimization problems,” Biclogical
Cybernetics, 52, pp. 141-152, 1985.

[6] J. Kim and H. Jeong, “Neural networks for optimal
data association of hot plate,” in Proc. of WCNN’95,
INNS Press, 1995.

[7] Y. Lee and H. Jeong, “A neural network approach to
the optimal data association in multi-target tracking,” in
Proc. of WCNN'95, INNS Press, 1995.

[8] D. Sengupta and R. A. Iltis, “Neural solution to the
multitarget tracking data association problem,” IEEE
Trans. on Aerospace and Electronic Systems, Vol.
AES-25, No. 1, pp. 96-108, Jan. 1989.

[9] P. Smith and G. Buechler, “A branching algorithm for
discrimining and tracking multiple objects,” IEEE
Trans. on Automatic Control, Vol. AC-20, pp. 101-104,
Feb. 1975.

(10] H. M. Sun and S. M. Chiang, “Tracking multitarget in .
cluttered environment,” IEEE Trans. on Aerospace and
Elec_tronic System, Vol. AES-28, No. 2, pp. 546-559,
April, 1992.

! Hong Jeong was born in Seoul, Korea,
* in 1953. He received B.S. degree in the
' . Department if Electrical Engineering
.- from the Seoul National University in
. 1977. In 1979, he received the M.S.
. degree in the Department of Electrical
Engineering from the Korea Advanced
Institure of Science and Technology. In
1984, 1986, and 1988, he received the S.N., E.E., and Ph.D.
degree, respectively, all in the Department of Electrical
Engineering and Computer Science at M.LT., Cambridge,
massachusetts, U.S.A. During the period of 1979-1982, he
was a faculty staff at the Department of Electrical
Engineering at the Kyoung-Buk National University, Daegu,
Korea. Since 1988, he was worked in the Department of
Electrical Engineering at the Pohang University of Science
and Technology, where he now works as a Professor. He is
a Sigma Xi member. During 1994-1995, he worked as a
vice-chairman in the Special Interest Group on
Neurocomputing in the Korea Information Science Society.
Also from 1991, he has worked as a committe staff in the
Neural Networks, Fuzzy, and Artificial Intelligence Group in
the Korean Institute of Telematics and Electronics. His
research interests include digital signal processing; computer
vision, speech recognition, and radar signal processing.




