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Analysis of the LMS Algorithm Family for Uncorrelated Gaussian Data

*Scung Hyon Nam and *Insung Lee

Abstract

In this paper, convergence properties of the LMS, LMF, and LVCMS algorithms are invesligatled under the assumption

of the uncorrelaled Gaussian input data. By (reating these algorithms as special cases of more general algorithm family,

unified results on these algorithms are oblained. First the upper bound on the step size parameter is obtained. Second, an

cxpression for misadjustment is oblained. These theoretical results confirm earlicr LMS works. Further, the results explain

why the LMF and LVCMS algorithms are experiencing difTiculties with planl noise having heavier tailed densities. Simu-

lation results agree with theorelical expectation closely for various plant noisc statistics.

1. Introduction

The least variance subject to a constraint on the mean
square errot {LVCMS) adaptive filtering algorithm was
introduced by Gibson and Gray in |5]. The LVCMS al-
gorithm is motivated by the steepest descent method like
the LMS and LMF algorilhms [3, 4). In (5], the conver-
gence in the mean coefficient error of the LYCMS algor-
ithm was analyzed without assumptions on the density
function of the input data as in {2, 3| for the LMS algor-
ithm and in [4] for the LMF algorithm. The resulting up-
per bound on the step size paramcter is quile loose and
the actual step size should be chosen much smaller than
the upper bound to ensure the convergence of the MSE
in practice. In [7], however, the convergence in the covari-
ance malnx of the coefficient error vector was studied for
thc complex and real LMS algorithms using the Gaussian
assumption on the inpul data vector. The resulting upper
bound on the step size is much tighter than the previous
bound in [3]. Further, Feuer and Wecinstein showed the
same resull using a different approach, and derived new
expressions for the misadjustment and the rate of conver-
gence [8).

In this study, the LMS, LMF, and LVCMS algorithms
arc considered as special cascs of a more general adaptive
algorithm [6), and the convergence analysis of the zencral
algorithm is given using a Gaussian assumption on the in-
put data vector. The tighter upper bounds so oblained ex-
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plain earlier simulation results on the LMF and LVCMS
algorithms in [S], which indicatc that these algorithms are
scnsitive to noise with a heavier-tailed densily. Further-
more, a new expression on the misadjustment is obtained.
Simulations for lhe syslem identification problem are
given to support the theorelical results.

i . The Generalized Error Criterion

The adaptive signal processing configuration of interest
is depicted in Fig. |. The input data veclor al time % is
given by X(&) = [x(&), x2(k), -, xp(8)]". and the X(&), k
=0, I, 2, -, are assumed 1o be uncorrelated. The crror

signal a1 lime & 1s given by

e(k) = d(k) - WRYX(R)
= n(k) — (W) - W*) X(k)
=n(k)— VT(k)X(k) (1

where W* is the veclor of optimal coellicients, W{k) is the

coefficicnt vector at time & so that
V(k) = w(k)-w* )

is the coefficicnt error veclor at timc %, and 2(%) is the

noise such that
nlk)=dk) - X)W,

The noise n(k) is assumed to be white and to have a sym-
metrical probability density funclion with zero mean and
finite higher order moments. Further, the noise n{%) is

assumed to be independent of the input data vector X(k).
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Rigure 1. Adaplive Signal Processing Coaliguration.

The method of steepest descent uses pradients of a
function of the error € (%} lo find the oplimum coefficient
veclor W* The [unction or error crilerion charuclerizes

the adaptive algorithm. In [6], a general crror cniterion

HAW, a, b, ¢, d)=aE{|eX(k)— FeX(&))?) +b[ {2 (k)]?
+cElel(k)} +d )

is considercd. This admits the LMS([2, 3], LMF[4), and
LVCMS[5] criteria for appropriate selections of 4. #, ¢,
and d. That is,

H (W, 0,0, 1, 0)= Ele()], (5
Ho(W, 1,1, 0,0= FE{e'(k)], (6)
and

HAW, L, 0, =4, Aa)) =E{|eX{k) — EeXk)]?}
+ala, ~ EeXk)}. (7

Taking partial derivalive of HW, a, b, ¢, @) with respect
10 W yields

AH (W, a, b, ¢c. d)

W = —daEteMR) X(R) — b -a) ELe’ (kY

Ele(ky x(k)} +acEl{e(R) X(k). (8)
Thus, the instantaneous gradient-based cocfficient adap-
tation rule which approximately minimizes #f, in (4) is
given by

Wik +1)=W(k) +aubedlk) X (k) 4+ 2uce( kY X(k). (9)

We should note that only & and ¢ are included in the

generalized algorithm (9) since the inslantaneous estimate
ol the pradient is wsed. The generalized algorithm in (9)
corresponds to the LMS algorithm if (b, ¢)=(0, 1}, the
LMF algorithm il (6, ¢}=(1, 0}, and the L.LVCMS algor-
ithm if {8, ¢)=(§, - (200 +1)). In the scquel, the general
adaplation rule (9) will be used in the analysis, and the
results could be applicd to the LMS, LMF, and LYCMS

algorithms.

. Convergence Analysis of the Generalized
Algorithm

We now assume that the input data X(k) 15 Gaussian,
5o thal i1 is also independent. Therefore, we can apply the
independence assumplions widely used in stochastic an-
alyscs ol the LMS (ype algorithm [?).

Subtract W* from hoth sides of (9) 1o obtain the recur-
sion lor V(&)

V(k 1) = V(&) +4pube*(k) X(R) +2ucelk) X(k), (10}
and then use (1) for (&) (0 obtain

Vik 1) = ViR +apb X 3 [

[221] 1‘

2 (R (= XT(RYViR)

F2uc(nlk) ~X7{£) V(&) X (k). (1)

Since R is symmetric, one can define the unilary matrix

a5

EIUXRXT RV} =T =diag(¥,, V2, -, Ya). (12)

Then
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Uvik + D) VT{E + DU = uvR VIR U

3 2
+16p2b2{ ¥ ( 3 ] n"(k)(—x'(k)v(k))“"} UX{(E) X (RUT

i=0 f‘

+ap2e? [ n(k} —XTR) V(R P UX(D XT(R) U”

=4

b | 3 [ y ) RN~ XT (R VR)P
(UXU) VTR UT + UV XTI UT)
+4uc(2(k) — X7k VL) {UXR) VIR UT +UVR) XT(RUT )
Héwbe { zo : ) W~ X R VRP
k) ~ XU V()| UX () X () U 13)

Taking the expectation of both sides of {13) and assuming
that the noise has a symmeltric density function with zero
mean and finite higher order moments, one finds

E{UVE +D VTR +N)UT = EIUVRI VIR UT}
—2u2E{XT(R) VIR [UX(R) VI(R)UT +UVRYXT (U™ )}
+4* b EHXT(R) VR UX(R) XT(RIUT

+4ptc E{UX(R) XT(RYUT)

+16p2d EX(XT(R) VR UX() XT(RYUT }

+16p7 B ELXT(RY V(RS UX(R) XT (R}

~4ub E{(XT B VEND TUX(R) VT (RYUT +UVR X (R U7 |}

(14)
where
a=6bEG(R)) +¢ (15)
b = 60D E(n'(R)) +24bc E(nt(R)) +2 (t6)
¢ =482 F(niE)) +4bcE(nY k) +c E(ni(R)) 7
d =I5B E(n(k)) +be. (18)

From the independence theory (see [12]}, the noise »#(%) is
independent of X(%)} and V(%). Further, if we assume that
V(k&) is small enough, then we can ncglect the erms of
power greater than 2 in (14). A morc general proof that
includes all the higher order terms is omitted here for
space. But the analysis shows that the higher order terms
can be considered as an additional constant term lo the
recursion for C(k) below. The constant term does not al-
fect the upper bound on .
Define

Clky= E{UV(R)VT(R)U")}. (19)
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It can be shown that

EXTR VR UX VIR UT FUVR X (R)UT)}
=I"C(k) +CR)I. (20)

and using the fourth momenl expansion for Gaussian ran-

dom variables, that

EAXT (R VE UVRI VIR UT ) = 2TCAR)T +r | FCRIT.
Qn

Therefore, combining (£2), (20), and (21), the recursion
{14) is simplified to

Clk +1)=Clk) - 2na(TCR) +CHRI}
+ 425 2T CR)T i [TCENT +H4p2c T, {22)

Following Feuer and Weinstein's LMS work [8), decom-
pose the recursion for C(£) to oblain

- N
(‘;’;(k +l) = ﬂi"Cii(k) +4[l2by; Z y/,Cpp(k) +4112.C7. N (’23)
Pl

and

Cn/(k + l) =My (\U(k) for 3 # j (24)
where
pii=1—=2ual¥i +v,) +81267:7;. 25)

Since the matrix C(&) is symmelric and posilive definite, il

is diagonally dominant [I1];thal is, ('f,-(k)éC;.'(k)C,‘,(k).

Therefore, the convergence of the diagonal elements of €

(%) cnsures the convergence of the off-diagonal elemens.
Define

Ck)=[C1 (B} Calk) - Crplb)T (26)
and
F= diag(p) g3« pw) +4ptbLLT Qn

where g = pi; and
L=171% - Y&l (28)
Then the diagonal term (23} can be rewritten as

Clk +1)=FC) +4u ¢ L. 29)
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Hence, C(&) converges if and onlby if all of the eigenvalues
of F lic inside the unil circle.

Following Foley and Boland’s LMS work [9], we use
the property of nonnegalive matrices stated by Ganlma-
cher [10] as follows. (For an alternative approach, sec 18].)

Theorem [9]: A necessary and sufficient condition thai
the real number ¢ be greater than the deminant cigenvalue
of the nonnegative matrix ¥ is thal all the leading princi-

pal minors of the characleristic malrix
Fq:ql —-F

be posttive. [)
From (25) and (27), we can sce that, if

at < (30)
all the clements of F are nonnegative. Further, ¥ is irre-
ducible for & #0 since R is assumed to be posilive defi-
nite. Hence, there exists a dominaat real eigenvaluc by
the Perton-Frobenius theorem [10), [11], and the theorem
given above can be applied.

With g =1, we investigate the principal minors of
Fi=dgal —8ubT ~ 44 ALLT. (31
First, consider the principal minor of order N. Let
D=diagld,, dy, -, dn) = 4ual —8udT. (32)
so that the principal minor of order ¥ is
Ay =det{(D—4p*LLT

» R - ,
= |1 di= 42 (v drds -+ dy) =4 b(d\ Y idy - dy)
|
—420(d, dy - dy Y2 Fdell4tBLLY). (33
But det(LE") =0, therelore,

Ay =detD— 42 B(LTD " LY det D. (34)

Then using the definition of 13 and 1. in (32) and (28), re-

spectively, we oblain

Ay = (4u)¥ [:1 )’i(f_l'-Z,u-‘i?T.') } ! 1~ 3 ‘;W } . {(35)

Since j >0, the necessary condilions for Ay > 0 are given
by
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aq
n< W (36)
and
v
Vo ;thin <
oa~-2uby; ' G7

Also we can scc that the principal minor of order less
than N will give the conditions that is idenlical to {37) ex-
cepl the upper limit on summation.

To find an explicit hound on g from (37), we follow
Feuer and Weinstein's LMS work [8]. The new bound on
#1s then given by

=
N
i N e ——
(7)132 Vit JUN-DR( YP-8N-1DL T %Y,
@ i-1 'R i=1 =) j#
(38)
which can be simplified to
a a
Y T3 (39)
3TV
E |

where £7(R) s the trace of the autocorrelation matrix for
the input X(&).
Now, we necd 1o check if (30) is satisfied. For noisc

with zero mean, symmetric probability density,
Ar' (k) = gl EG?(RD)? (40}

holds lor some g. For example, ¢ =9/5, 3, 6 for uniform,
Gaussian, and Laplacian densilies, respectively. Then we

may rewrile (16) as
h=a’ +12a F*(k)) +(60g— 108} 02| E(n2 (k)] {41

For ihc LMS, LMF, LVCMS algorithms, @ =20 with the
choices of &, ¢ menlioned earlier since A < 0. Hence, (30)
holds for uniform, Gaussian, and Laplacian densilics.

Il we substitute the choices of &, ¢, we may have

TR “2)

pHe
as an allernative expression for the previous upper bounds
12, 4. 5) obtlained without

Gaussian assumplion on input data. Comparing {39)
and (42), we can sec¢ that the new bound is lighter than

the previou one if the condition {30) holds.
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Table 1. Upper bounds on the step size paramcter with and
withoul Gaussian assumption.

algorithm without Gaussian with Gaussian
_ assmption assumpt.on
| i _
LMS (R} AR
| 1
LMF SEGUN AR W0 Er* (6D £7(R)
! ! _2
LVEMS ZiR) 351r(R)

a=6E(n* (k) — (205 +2)
b = 0L (E) =242 +1) E(n* (&) - (2al 1 XY

The upper bounds, with and without the Gaussian as-
sumption, on p for the LMS, LMF, and LVCMS algor-
ithms are compared in Table I. For the LMS algorithm,
(39) corresponds lo the earlier result by Feurc and Wein-
stein in [3]. Both the new and previous bounds for the
LMS algorithm depend only on the trace of the autocor-
rclation matrix of the input data vector. On the other
hand, the new bounds for the LMF and 1L.VCMS algor-
ithms depend on the sccond and fourth order moments of
the noise whereas the previous bounds depend only on
the second moment. This ¢xplains the reason why it is
difficult to get convergence in the crror covariance of the
coeflicients in the LMF and LVCMS algorithms when
the noise has a heavier-lailed density.

V. Steady State Performance of The
Generalized Algorithm

In [2]), the misadjusiment of the LMS algorithm was
found using the assumption that the coefficienl vector W
(%) of the adaptive filter is very close the 1eue coeflicient
veclor W* On the other hand, Horowitz and Sceanc (7]
(and Feucr and Weinstein [8] lalcr} obtained the misadju-
stement for the LMS algorithm wilhout using the assump-
tion when the input data is Gaussian. In this study, how-
cver, we assumed thal W{(k)=~W* in obtaining the recur-
sion (22) duc 1o the terms of higher power {(greater than
2} in Y(&). As pointed out carlicr, this assumption is fic-
titious for the LMS algorithm as demonstrated in {7, 8].

Define

IR} = E(€2(R)} = EX[d (k) - WT(R) X(R))*} (43)

as the MSE at time £. Then the misadjustment is given by

— Jmse(w} _J’:uw_(k_)

M FP)

(44)
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where Jase is the minimum MSE and Joe(90) is the steady
slate MSE. Then

Imelk) = E{€*(k)) = EX[d(k)— XT(%) W(k)]*}
= EIXTURIW* +alk) = X" () W(k))?}
= Ef[nlk)~XT(R)V(R))?)
= E{nXk)) = 2E{n(R)XT(R) V(L))
+ELVIR) X(RYXT(R) V{k)). i45)

However, (%) has zcro mean and is independent of X(%)
and V(). Furthcrmore, X(%) and V(%) arc independent
since X(&) is Gaussian and is uncorrelated in lime. Thus,
(45) becomes

Imselk) = Do 7 | ELVRIVTR)) ECXUBXT(R)} ]
= Jrwe FLT CR) {46}

where Joe = E(n%(k)} and L and C(k) arc defined in (28)
and (26), respectively.
As C(E) converges (0 a sleady state value, the MSE be-

comes

Tnel O} = J s+ Clw0), a7
From (29}

C(20) =42 1 ~F)' L, (48)

and hence, substituting (47) and (48} into (44) yields

4P 'L

Jomse

M {49)

Substituting {27) and (28) into (49) and using the matrix

inversion lemma [12] to invert the matrix will yield

{i 1Y
— L 3
< i=1 @~ 2}1 bY;
M= 7 " . (50)
kv Y
o1 a—2ubV:

As menlioned in Section T, (22) should contain a con-
stant term associated with ¢’ which comes from higher
order tcrms. Although the constant term does not affect
the upper bound on the step size bul affect the misadju-
stment value for the LMF and 1.VCMS algorithms. How-
cver, the cffect of the constant term will be reduced as the
step size ¢ becomes smaller since it is of second order in .

For the LMS algorithm(a =& =1), the misadjustment in
{50} corresponds to the catlier result by Feuer and Wein-
stein in {8]. For the special case of ¥:=¥;, i#f, (50)
simplifics to
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Table [1. Misadjustment values with and wilhoul Gaussian assumplion.
algorithm | wilhout Gaussian assumplion | __ .. With Gaussian assumplion
t
[LMS ntr(R) JB)—‘_‘
1=pu(l +2/N)r(R)
LMF 2yh’[n°(k))ir(R) 2uE(nRt (R Lr(R)
I[E@GHEN IECTEN RN — 10p E®ENQ 4+ 2/M) Er(R)
ctr(R
LVCMS .f‘c 7(R) . - I [_r{R)
i _ E(nXk) Em’ () (@ —pb {1 +2/Nr(R)}
a—- GEOGRRN — (204 +2)
b — 60 E(n (k) ~24(2 55 +2) E(7 () 1205 1 1Y
¢ = 4Em (R — 4204 +2) E@(R) 1 2a] + 1) E6C ()
] R The actual misadjusiment values are oblained by averag-
. 1t .
M= - - 51 ' : a s 3 :
T a—pbll TIMDR 1) ing Lhe last 125 data samples oul of 2000 samples. Note

The misadjustmenl cxpressions with and without the
Gaussian assumption {or the LMS, LMF, and [.VCMS
algorithms are compared in Table 11 Clearly, the misad-
justment values wilh the Gaussian assumption are larger

than those without the assumption in all three algorithms.
V., Simulation Results

Simulations were performed on the syslem identifi-
cation problem studied in (4, 5. The transfer function of
(he syslem is given by

Ple)=0.0 402z F0.3277 40427 05277 104z °
+0.3z7¢ 4022 T+0.127%

The value of the step size j for cach algorithm is chosen
lo give the same rate of convergence. The time conslant is
fixed at 555 samples. The inpul signal X(£) is while and
Gaussian with 7zero mean and unil variance. The plant
noise 7(k) is while with zero mean and variance 100. The
noise is independent of the input signal. The adaplive fil-
ter is initialized by adding 1o each of the cocflicients a
zeto mean, Gaussian random variable with standard devi-
ation 0.75.

Tables M-V show the upper bounds on g calculated
wilh and without the Gaussian assumption for this system
identification ¢xample. K is clear that the new bounds are
much tighter than the original bounds for all three algor-
ithm and for al) noise densitics.

The mean squared coefficient error lor the LMS, LMF,
and LVCMS algorithms arc obtained by averaging 40 in-
dependent runs. Curves look very similar to thase shown
in |5} and are omitted here. Theorclical and actual misad-

justments for three algorithms arc shown in Tables VI-W.

thal the misadjustment values computed rom the new
cxpressions are slightly closer to the aclual values than

those from the original expressions for all cascs.

vable [ll. Upper bounds on the step size parameler with and
without Gaussian assumption for lhe system identifi-
cation problem - uniform noise density.

algorithsn withoul Gaussian with Gaussian
... Assumption _assumplion
o 37X .
Toassxaot | 206x107t
T 278% 107 T3 x s

Table I¥. Upper bounds on the slep size parameler with and
withoul Gaussian assumplion for the system identih-
calion problem : Gaussian noise density.

algorithm without Giaussian wilh Gaussian

_| . dssumplion _Assumption
_AMs om0
IMF | assxiett | 123x10°
LVCMS | 8sSx107° 1 2% 107

Table V. Upper bounds on the step size parameter with and
without Gaussian assumption for the system identifi-
cation problem: aplace noise densily.

algontbm without Guussian with Gaussian
) L assuinplion ___:!sa;umplio_n ]
LMS Con 10X
GME | assxet T e7x107 |

Lvems | 7eaxa0t | sdax10t

Table Yl. Misadjustment values with and wilthout Gaussian as-
sumplion for (ke system identificalion problem - uni-
form noise density.

theory
algorithm without Ganssian| with Gaus;ién simulation
assumption | assumption ——
TMs | snixa0 | Rioxio) [ 851x07
LMF [ 347310 | 349x107t | 402x107
Lvems | 2ssx10” | 26510 T 3053 107" |
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Tabte W. Misadjusiment values wilh and without Gaussian as-
sumption for the system tdentificalion problem:
Gaussian noise density.

theory
algorithm | without Gaunssian| with Gaussian simulation
assumplion assumplion
LMS 8.11x107" 8.19x107° 8.93*]0"
CIMF | 135x107 [ 1.36x107° | 154x1077
LVCMS 9.26x 107} 948 x 107? 1.02x 1072

Table W. Misadjustment values wilh and without Gaussian as-
sumption for the system identificalion problem:
Laplactan noise densily.

.. . theory _ .
algorithm wilhoul“Gaussian._w_ith Gaussian simulalion
. _assumption | assumption |
T ums | saixao”t | 819xi0” | 820x107
LMF | 811x107% | 813x10°% | 914x10°% |
LVCMS 255x 1072 2.63x 1072 283% 1072

VI. Conclusions

In this study, convergence properties of the LMS, LMF,
and LVCMS algorithms under the uncorrelated Gaussian
input data are investigated. This is carried oul by employ-
ing the generalized error criterion that admits all threc
algorithms. The analysis provides the unified resalts on
the upper bound for the slep size and the misadjustment
expressions for afl three algorithms under the uncorre-
lated Gaussian assumption, The results also explains con-
vergence characteristics of the LMF and LVCMS algor-
ithms cnyountered in the previous simulation studics. A
new results also provide belter accuracies to simulation

results.
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