Filtering Random Noise from Deterministic Underwater Signals via Application on an Artificial neural Network

  • Published : 1996.09.01

Abstract

In this study, we examine the applicability of an artificial neural network(ANN) for filtering underwater random noise and for identifying underlying signals taken from noisy environment. The approach is to find a way of compressing the input data and then decompressing it using an ANN as in image compressing process. It is well known that random signal is hard to compress while ordered information is not. The use of a limited number of processing elements(PEs) in the hidden layer of an Ann ensures that some of the noise would be removed in the reconstruction process. Two types of the signals, synthesized and measured, are used to examine the effectiveness of the ANN-based filter. After training process is completed, the ANN successfully extracts the underlying signals form the synthesized or measured noisy signals. In particular, compared with the results form without filtering or moving averaged, the ANN-based filter gives much better spectrograms to identify underlying signals from the measured noisy data. This filtering process is achieved without using and kind of highly accurate signal processing technique. More experimentation needs to be followed to develop the ANN-based filtering technique to the level of complete understanding.

Keywords