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Adaptive Precompensation of Wiener Systems

Hyun Woo Kang®, Ki Tack Bae™, Yong Soo Cho**, and Dae Hee Youn*

Abstract

In this paper, an adaplive precompensator, which can reduce the distortion of a Wiener system effectively, is proposed.

The previous technigues for adaptive precompensalion, based on the Volterra series modeling to compensate the distortion

of a nonlinear system, are not suitable for real-time implemcntation due to high computational burden and slow conver-

gence rate. This paper presents an adaplive precompensation technique for the class of nonlinear systems, which can be

represented by interconncction of a linear dynamic subsystem and a memoryless nonlinear subsystem, referred to as Wiener

system. An adaplive ulgorithm for adjusting the parameters of a precompensator, structured by a Hammerstein model, is

derived using the stochastic gradient method. Also, an adaptive precompensation technique which can effectively reduce

nonlinear distorlion in gze-law lype of saturalion characteristics is proposed. The validity of the proposed algorithm is con-

{trmed through simulation by applying it to known Wiener systems and a typical loudspeaker maodel.

1. Introduction

Compensation of nonlinear distortion due 1o saturation
in clectronic devices or electromechanical components are
becoming more important as the state of the art in elec-
tronic cngincering continues to progress. Followings are
some applications where small distorfion produced by a
nonlincar component dominates the overall performance :
(a) Nonlinearity in amplifiers, especially in high data-rate
communicalion channels or in satellite communication
channcls, produces intolerable distortion (1}, [2]. (b) Louds-
peakers consisling of major nonlincar sources, including
the non-uniform magnctic ficld (nonlincar B! product)
and the nonlincar compliance of suspension and surround,
produce the harmonic and intermodulation distortion,
which are most significant in Hi-Fi audio systems {3].

Two potential adaptive compensation techniques which
allow us to reduce the distortion of time-varying nonlincar
channels are adaptive precompensation at the lransmission
side and adaptive cqualization at the receiver side [2].
Although nonlincar equalization is effective means of
compensating the distorlion of a nonlinear channel, there
exisl sitwations where 1t is ¢lfective or necessary to place a

compensater in front of the nonlincar sysiem to be
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compensated. Onc example would be compensation of
nonlingar distortion for high-power amplifiers in satellite
communication channels ft] since it would appear logical
to reduce nonlinear distortion at the transmitter where it
occurs and where the transmitted bits are available. The
other example would be distortion reduction of a loud-
speaker 3], [5) or actlive noise cancellation [4], wherc the
outpul of the nonlinear system is not an electric but an
acoustic signal.

Recenily, several adaplive precompensation techniques
have been proposed 10 reduce nonlinear distortion of a
time-varying system [1], {5), {6). However, since these
techniques are based on the Volterra series modeling,
they are not practical for real-time implementation due to
the high computational complexity as well as slow con-
vergence (3], [6]. The block-oricnted modcl is another
approach for modeling nonkincar systems without requinng
large filter coefficients. This approach is based on the
assumption that a nonlinear system consists of relatively
simple subsystems, and that structure of the system is
known. Especially, the class of systems which can be
represented by a linear dynamic subsystem followed by a
zero-memory nonlinear subsystem are called the Wiener
system. The Hammers(cin system consists of the same
subsystems connected in the reverse order. The systems of
these forms have heen employed to model nonlinear
characteristics in many areas of signal processing. Also,
numerous papers concerning on the identification of the

block-oricnted model without bhaving access to signals
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interconnecting the subsystems have been published |7,
18], [9). The subsystems were identified on the basis of
both the input and output signals of the whale system.
Whereas various solutions for identifying Wiener (or
Hammestein) syslems with different types of memoryless
nonlinear subsyslems were suggested, no atlempl has yet
been made to compensate the nonlinear distortion of the
systcms.

Therefore, in this paper, an adaptive prccompensation
technique for reducing the distortion of a Wiener system
is proposed. In Section 11, an appropriale precompensation
structure (Hammerstein model) for compensating the dis-
tortion of a Wiener system is proposed, and an adaptive
algorithm for adjusting the coefficients of the preco-
mpensalor is derived wsing the stochastic gradient method
[10], [11]. Here, the memoryless nonlinear subsystem part
in a Wiener system is assumed to be well approximated
by a polynomial form of finite arder. Also, a special case
of an adaplive precompensation lechnique for the situ-
alion where the nonlincar subsystem part is modcled by
lhe s-taw function is discussed. In Section 11, 1he validity
of the proposed algorithm is demonstrated via computer
simulation by applying it to known Wiencr systems and a
typical loudspecaker model. Conclusion is made in Section
v,

. Adaptive Precompensation of Wiener
Systems

Let #(») and y(n) represent the input and output
signals, respectlively, of a discrete-time causal nonlinear
system. Then, the Volterra series expansion for a nonlinear
system is given by [12}, [13), [14]

y@) = f +ﬂ§)[ i Gmy, oy, my) wln~m ) u(n—my )|
i (1)

wherc fi (m,, my+,m;) is known as the k-th order
Volterra kerncl. Since the Volterra modeling of a nonlinear
system requircs a great deal of computation (I3[, only
nonlinear systems incorporaling up to second or third
order terms have been actually realized (16}, {17]. Another
approach is based on the block-oriented model where a
nonlinear system consisis of relalively simple subsystems,
and the structure of the system is known, The signals
interconnecting the subsystems are usually inaccessible to
mecasurements. If a linear dynamic system is followed by
a memoryless nonlincar system as shown in Fig. 1{(a), the
bleck-oriented model is called the Wiener model. In
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Fig. ). Wicner model and Hammerstein model
{a) Wiener model
{b) Hammerstein model

Hammcrstein model, the same subsystems are connected
in the reverse order as shown in Fig. I{(b). Since the
Wiener and Hammerstein models can be considered as
special cases of Volterra series expansion, the Volterra
kernels for Wiener and Hammerslein models must satisfy
the relationship given by (2) and (3), respectively [7].

Salmy, my,-me) =0 fo(my) fo(my) -+ fi(my) )
fk(mh m20""m.§) =

0p Sfrlm, m,---m)
0 otherwise

for my=my=me=m

(3

where 0, denotes scaling constant.

Fig. 2 shows the block diagram of a proposed adaptive
precompensator which can reduce the distortion in a
Wicner system. The proposed scheme is composed of a
system cstimator, which estimates the parameters of a
Wiecner system using an adapiive algorithm, and an
adaptlive precompensator with which the total system
becomes linearized. If the memoryless nonlincar part of
the Wiener system can he approximated by a polynomial
{form of finite order, the input and output relationship of

the system cstimaltor is given by

-~ NI ND f

) =1 a; (2 heutn—F)) (4)
= &)

where Ny and N, denole the memory length of a lincar
filter, h,, and the order of a nonlinear filter, g, respect-
ively. The coefficients of the system estimator, 4; and a,,
are adfusted to minimize the mean square error, Efe]
(), between y(n) and v () using only the input and
output signals of the system {7].

Assuming that correct parameters of the Wiener system
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Fig. 2. A block diagram of an adaplive precompensator for
Wiener system
. L a .
are estimated, an adaptive precompensator, which is ideally Swin +l)=s,,,(n)—7s V. (n), m=1, 2, N, (8)

the inverse of the Wicner system, can be designed 1o
reduce distortion of the Wicner system. Since an appro-
priate structure of the precompensator for Wiencr system
can be casily shown to be the Hammerstein modcl, the
precompensator in Fig. 2 is construcled by a memoryless
nonlinear inverse filter followed by a linear inverse filter.

By using a polynomial form of finitc order as a memoryless

nonlinear inverse filter, the precompensator can be
expressed as

N, N, .
ulm)=3 p; 2. s; % (n—i) (5

sl ji=1

where N, and N, denote the memory length of a lincar
inverse filter, 7, and the order of a nonlinear inversc filter,
s;, respeclively. The crror of the total system is defined
by
er(my=dn)—y(n) 6}
where the desired signal, d{n), is the dclayed version of
input signal, x(n), by § samples to account for causality
of the precompensator. The coefficients of the preco-
mpensator is obtained by minimizing thc mean square
error, E{e} (n)), of the lotal system. An adaptive algor-
ithm for updating the coefficients of the precompensalor
is given by applying the stochastic gradient method as
follows [10], (11]:

Dt + 0= puli) =3 Yy ), m=1, 2, N, )

where &, and a, represenl step-size conslants of a linear
inverse filter, p,, and a nonlinear inverse filter, 3,
respectively. The step-sizc constant controls stability and
convergence rate of the algorithm. The term, 6,,_(1:). in
(7) represents an inslantaneous estimate of gradient of
E{el (n)} with respect to the coefficients of linear inverse
filter, p,. delined by

. del(n)

Valn) =, T ©
- Oy
=—-2er(n) i) (0

Assuming that the coefficients of the system estimator
have converged to correct values of the Wiener system,
the outpul of the system estimator, )‘7(7!.). can replace the
output of the Wiencr system, ¥({z), in (10}. Sincc )-l{n) is
a function of input signals, #{n—1), #(1—2),.-(10) can
be rewrilten by

. M —
Vo =2e;(m Y ‘i}(:—(jﬁ:)— ¢ :ﬁ%n;—)

r=1

an

For simplicily of notation, we define the denivative of

Wiener system as

3y

uln—r) (12)

glirin)=

The above equation can be rewrilten by substituting (4)
into (12) as
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W, N, R
grsm=Y lah (L hun-k) " (13)
i=) k=1

Also, the derivative of a precompensator oulput with
respect to py, the second part of the summation term in
{(11), can be defined as

du(n—7»)

b 0) (14)

b7 ) =
Then, {14) can be rewritlen by substituting (5} into (14)

4as

Nl
balrim)=Y s, x' (n—r—m. (15)

7=1
Finally, an adaptive algorithm for the lincar inverse part
of the precompensalor can be obtained by subslituling
(11), (13), and (15) into {7) as follows:

NN,
P ¥V =P Yo, e, Y larh,

r=1 {-|]

Ny N,
(Z hutn=h) "L s;x" a=r—~m. (i6)
k-t =1

An adaplive zlgorithm for the nonlinear inverse part of
the precompensator can be derived in a similar way. The
term, ‘;75_(n). given in {8), is defined by an instantancous
estimate of the gradient of £{e (n)} with respect to the

cocflicient of the nonlincar inverse filler, s,, as

- o
V. (n) = _('Js,,,(n) (a7
. 2 y(n)
= =2 er(n) 2s(m) (18)
Also, (I8) can be expressed as
- Ny : .
v;_(ﬂ} =-=2 er (n) E i}ﬂ M{} (lg)

2\ dutn—r) a8 (1)

Since the first part of summation term in (19) has already
defined in {12), we defing, here, the sccond part of sum-
mation term in {19} as

duln~7)

Cplrin}=- 5.9 20)

Then, {20) can be cxpressed by substituting (5) into (20)

as
¥,

Enlrin) =3, pi x™(n—r—1). n
i=1

Finally, an adaptive algorithm for the nonlinear part of
the precompensator is obtained by substituting (13), (19},

&3

and (21) into (8) as follows:

N, N,

S F =5 +acerm) Y lah,
raul f

Ny N,
(Z hyuln—R) 'L pix™ (n—r—i). (22)
=} ¢ 1

Notc that, in order to obtain the coelficients of the
nonlinear inverse filler, S, of the precompensitor, both
the cocflicients of the hncar inverse filter, p,, of the
precompensiator and the estimales, &, and a;, of the sys-
tem cstimator are required. Consequently, (16) and (22)
constitule an adaptive algorithm for the precompensalor
which can reduce the distortion of a Wiencr system,

-
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Fig 3. Characteristics of the g-law function
(a} input-output relationship for the u-law function
{b)frequency responses of the g-law function
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So far, the mcmorylés}a nonlinear parl of the Wiener
syslem and lhal of the precompensalor are modeled by a
polynomial form of finitc and known order, which can
provide good approximation for syslems with smooth
nonlinear characteristics. However, in order to accurately
model saturation characteristics, typical phenomena of
memoryless noalincar systems, a polynomial function
with infinite order is gencrally required. Thus, in this sec-
tion, an adaptive precompensation technigque, which
enables us to avoid this difficulty if the Wiencr system
possesses the p-law type of saturation characteristic, is
proposcd. Fig. 3 shows input-output relationship for the
p-law characteristic and corresponding frequency responses
for different values of u. Here, the valuc of g controls the
degree of nonlincarity in Wiener systems. For instance, a
Wiener system with the value of p=0 reduces to a lincar
system. Notc thal a polynomial function with infinite
order is gencrally required to model the g-law character-
istic in Fig. 3 whereas only one parameter, g, is sulficient
to model the nonlinear part of the Wicner system. A sys-
tem eslitnalor wilth the g-law funclion as & memoryless
nonlinear part is given by |18}

N,

% (n) =1 by u(n=k) (23)
=)

s~ dog(bplu ) )~

¥(32) = 1,0, tog(l + ) . signlu (),
~ 1 ;(ﬂ)/ ;max {1 (24}

where # (1) and _‘;'(n) denote an output signal passing
through only the lincar part, %, and an oulpul signal
after the nonlincar part, modeled by the p-law function,
of a system estimator, respectively. Also, ;max represcnts
the maximum valuc of 1he input signal, % (n), for the i
-law function. Also, iog and sign(-) represent the natural
logarithm and the function which lakes only sign of the
argument, tespectively.

An updating algorithm for a parameter, g, of the y-law
function and coefficients, &, of the linear filter in the sys-
tem estimator can be obtained by minimizing the mean
square error, E{e? ()}, between the output signal of the
Wiener system, ¥{#n), and the output signal of the system

eshimator, 3;(7:), as follows [10], ]11):

B+ 1= hmd =y Vi, =1, 2. Ny, (25)

a+ 1) =pn)-q, ‘-«’,. (26)

where o« and «, denote step-size paramefers governing

convergence rates of the lincar filter and the g-law func-
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tion, respectively. Also, V , and é, represent instan-
fancous estimales of gradients of £ {ef(n)} with respecl to
linear [ilter coefficients and p, respectively. If we define

the ¢rror signal as
e (m) = y(n)—y(n). @7

The instantancous estimates ol gradients, é,,, and 6,, , can
be obtained by using (23) and (24) as follows:

ay(n)

oh; (28)

6h,= —2¢{n) -

=2edn)- - -~ '“I—z-‘“(n—_'m—M——A; = stgnlu(n-1)
log (b +pd-log{l +plu{md)) /2,00

ag;(g)

V‘, = _231(71) "‘,]“

= —22,(n) Uy,

_._—--iz-gn):I-— log(l +p)—‘!q‘— -
U max +ﬂ~| u (n)| | tu
Uog(L+m»°

- sign(u (). (29

Thus, by substituting (28) and (29} into (25) and (26), the
parameters of the system estimator can be obtained.

Since there cxists an exact inverse function of the p-law
function, we nced an adaplive algorithm only for the lin-
ear inverse filter, p;, of the precompensator. If we defing
% () as a signal passing through (he inverse of the g-law
function, then the output signal of Lhe precompensator
can be cxpressed as

Mo
u(n)z_z box (n—1) (30)
where
o =
7 () =, {u ) Fe =1 ] sigateo) Q1)
ﬂ.

Assuming that the output signal of the system estimator,
y(n), well approximates the outpul signal of the Wicner

system, y.(n}, the total error can be approximated by
er(n) = d(w) ~ y(n). (32)
Finally, an adaplive algorvithm for the hincar inverse filler

of the precompensator is obtained by minimizing £{e2 ()}

wilh respect to p; as follows:
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Pl +1)= Pl =1, Uy, m=1, 2, N, (33)

where

] }(n)
Ofm

{7,_= —~2er(n)

M. _
~2er(n) p | k}: by x (n—k-q)’
=1

- = = (39)
log (1 + ) (1 +pl 2 ()| / st

- sign (k}iﬁI he % (0 -k—q))‘

In summary, for Wiener syslems possessing the u-law
type of saturation characteristic, the precompensalor ¢an
be designed by following the sleps:

(i)estimate the parameter, g, and filler coefficients, A,
of the system cstimator by iteraling (25)-(26) and
(28)>-(29)

(ii) estimate the coefficients of the linear inverse filter, p;,
by inserting the estimated values from (i} into (34)
and by iterating (33)-(34)

Gii)construct the precompensator by inserting the

estimated values, g and p;, into (30)-(31)

(iv) repeat (i)-(iii) if the system is time-varying

. Simulation

In this section, the feasibility of applying the ailgorithms,
proposed in section ll, to reduction of distorfion in
nonlincar systems is demonstraied by computer simu-
lation, The first two examples arc concerned with the
compensation of distortion in nonlinear systems using
Wiener modcl with a potynomial form of finite order. In
the third cxample, distortion of a nonalinear system is

compensated by Wiener model with the g-law function.

A. Precompensation of a known Wiener system

The nonlincar system used for this simulation is a
known Wiener system represented by interconnection of a
linear subsystcrn of 10 memory length, given by (35), and
a memotyless nonlinear subsystem formed by the third-order
polynomial, given by (36).

%) =00 uln—1)+04 - w(n—2)+0.08 - u(n—3)
+0.15- u(n—4)

+0.05 - u{n—5)+0.01 - u(n—6)+0.005 - u(n—7) (35)
+0.002 - 2(n—8) -+ 0.001 - u(n—9)+ 0.0005 - 2 (22— 10)

y)=1.5- 2 (n) +0.08 - 2 2(n) +0.02 - 2 > () (36)

(48]
60 69.3

40
® 2]

[dB)

®) 20

0 0.1 0.2 0.3 0.4 0.5

[a8]

()
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40
20 89 45
(d) 0
0 0.1 0.2 0.3 0.4 05
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Fig- 4. Inpul and oulput spectrum of the known Wiener syslem
(input:a sine wave with normalized frequency 0.08)
{a) input spectrum
{b)output spectrum of the known Wiener system
{c) output spectrum of the system estimator
{d)output spectrum when the proposed precompensalor
is used

[n order to compensate the distortion present in this system,
the parameters of the Wiener system, given by (35)-(36),
were first cstimated by the system estimator, The memory
length of the linear filter, N, and the order of the
nonlinear filter, N, in the system estimator were assigned
to the same values as the ones ol the Wiener systcm, 10
and 3, respectively. The input signal used for simulation
was a whitc random signal with uniform gdistribution over
|-1, 1]. After having checked the convergence of mean
square errors in system estimation, we used the adaptive
algorithm, derived in section I1, to obtain the coefficienls
of the precompensator. Here, the order of (he nonlinear
inverse filter, N;, and the memory length of the linear
inverse filter, N,, in the precompensator were set lo 5 and
20, respectively. The parameters of the precompensator
were estimated by applying a white random signal with
uniform distribution. Next, in order (o investigatc the
performances of the syslem estimator and the preco-
mpensator more clearly, we applied a sinusoidal signal 1o
the precompensated system and compared its result to the
case where no precompensation was performed. Fig. 4(a)

shows the spectrum of an input signal with a normalized
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frequency 0.08 and amplitude 2. Fig. 4(b) shows the cor-
responding .output spectrum when no precompensation
was performed. Notc that the linear distortion oocurs at
the same frequency as the frequency content of the input
signal while nonlinear distortions occur at the sccond and
third harmonics due 10 polynomial form of sonlinearily
up 1o third order. By comparing it with Fig. 4(c), which
shows the output spectrum of the system cstimalor, one
can see thal the system cstimator works perfectly. Fig. 4
(d) shows the outpul spectrum when the proposed
precompensator was applied to the Wiener system. Nole
that the second and third harmonic components are con-
siderably reduced by about 9 dB and 21.5 dB, respect-
ively. The number of multiplications required for the
precompensalion part in the proposed approach is 25
whife 285 multiphications, even with taking into account
the symmetric property of Volterra kerncls, is needed to
implement the precompensator part in the previous

approaches utilizing the Volterra series expansion.

B. Precompensation of a loudspeaker model

In this section, the proposed precompensation technique
is applied to rcduction of distortion in a loudspeaker
model. The principal causcs for nonlinear distortion of a
loudspeaker at lower frequencics are nonuniform B/
product versus the voice coil, and nonlinearities in 1he
compliance of the suspension and surround [3). The
state-space equation for a typical foudspeaker model
taking into account these nonlincar effects is given by [5)

-0l 0 =02 0.4
Xn+D)=1| o 1 1 X+ 0 | u(n)
0.6 —0.5 —0.t5 0
(37)

~0.04x,(n) x;(n) ~0.05x2 (3}

=0.08 %) (n) + 0.01 x,(m)x, (n) + 0.02%x,(2) x° (n)
y(n)=(0 107 X{(n)

where #(n), y(n), and X{#) denote an input signal, an
output signal, and a state vector, respectively. The third
ferm on the RHS of (37) represcnts the main source of
nonlinear distortion caused hy the nonlinear B{ lactor
and the nonmlinear suspension of a loudspeaker. Fig. §
shows the second-and third-order Volterra kernels of the
loudspeaker model, which were estimated by approximat-
ing the state-space cquation in (37) with the Volterra
series expansion. The memory lengths of the first-order

Volterra kemnel, second-order Volterra kernel, and Lhird-
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Fig. 5. Volterra madeling of the typical loudspeaker model
(a) first-order Volierra kernel ( £, ()
(b)sccond-order Volterra kernel { £,(7))
(c)third-order Vollerra kerned { f35(2))

order Volterra kernel were set 1o 17, 10, 10, respectively.
Fig. 5(a), (b), and (c) show the first-order Volterra kernel,
second-order Vollerra kernel, and third-order Volterra
kernel with the first argument set Lo 5, respeclively. From
Fig. 5, one can see that an approximate second-order
Volterra kernel and third-order Vollerra kernel can be
obtained by multiplying the first-order Volterra kernel as
given by (2), implying that Wiener modeling of a loud-
speaker is adequalte.

As in the previous simulation, the loudspeaker modecl
was {irsl approximated by the system estimator {(Wicner
modcl with N, =15 and N,=3) and then linearized by the
precompensator (Hammerstein model with ¥,=20 and
N;=35), all with o random input. Next, an sinusoidal signal
was applied to the precompensaled systern to see how
well the syslem estimator and the precompensator perform.
Fig. 6(a) and (b) show the spectrum of an input signal
with a normalized frequency 0.08 and amplitude 2, and
corresponding output spectrum, respectively. Shown in
Fig. 6(c) is the outpul spectrum of the systcm estimator

(Wicner model} which approximates the output spectrum
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Fig. 6. Input and output spectrum of the typical loudspeaker
model (input: a sine wave with normalized frequency 0.08)}
(a}input spectrum
(b}output spectrum of the typical loudspeaker model
(c) output spectrum of the'system estimator
{d)output spectrum when the proposed precompensator

is used
{e) output spectrum when the previous approach is used

of the loudspeaker model. From Fig. 6(d), one can see
that nonlinear distortions at the second and third har-
monic frequencies are considerably reduced by about 13.7
dB and 23.3 dB, respectively, when the proposed preco-
mpensator is used. By comparing this result with Fig. 6
(), obtained by the previous approach {5, it can be said
that the precompensator proposed in this paper can
reduce the distortion of a loudspeaker model efiectively,
even with a small number of filter coefficients. Note that
the number of multiplications required for the preco-
mpensation part in the proposed approach (previous
approach) is 25 (292 when symmetric property is taken
into account). In general, computational burden for the
proposed approach increases linearly as the order and
memory length of the model increase, while it increases
exponentially for the previous approach using the Volterra
series expansion. On the other hand, Fig. 7 shows the
results of precompensation when intermodulation distor-
tion occurs. In terms of Wiener modeling and preco-
mpensation of the loudspeaker, all resulis are similar to
the ones in Fig. 6. Note that about 13.6 dB of inte-
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Fig. 7. Input and output spectrum of the typical loundspeaker
model {input : a sine wave with normalized frequencies
07 and 0.08)
{a) input spectrum
{b)output spectrum of the typical loudspeakes model
{c) output spectrum of the system estimator
(d)output spectrum when the proposed precompensator
ts used
{e) output specirum when the previous approach is vsed

rmodulation distortion is reduced by the proposed
approach whereas about 12.6 dB is reduced by the pre-
vious approach.

C. Precompensation Wiener model with the u-law
function
The nonlinear system used for this simulation is a
known Wiener system represented by cascade of a lingar
subsystem of 3 memory length, given by (38), and a
memoryless nonlinear subsystem formed by the u-law

function (x4 = 10), given by (24).
#(@)=02un—1)-05un—-2)+02u(n-3) (38)

As in the previous simulation, we, first, ecstimated the
parameters of the Wiener system, k& and g, by step (i)
and, then, adjusted the parameters of the linear inverse
filter (N, =40} in the precompensator by step (i}, all with
random inputs. Fig. 8(b} shows the output spectrum

when an input signal with a normalized frequency 0.04
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Fig. 8. Input and oulput spectrum of Wiener system with y-law
function (input:a sine wave with normalized frequency
0.04)
{a)inpul spectrum
{b) output spectrum of lhe Wiener system
{c) oulpul spectrom when the proposed precompensator
is used

and amplitude 1, shown in Fig. 8(a}, was applied to the
Wiener system. From Fig. 8(c). onc can see thal the
proposed precompensation lechnique with Lhe inverse u
-law function is very effective in reducing the distortion
of a saturation component if its input-output characler-
istic can bc approximated by the u-law function. Note
that the number of paramelers to be estimated for the

precompensation parl is minimal, i.e, N, plus one.
IV. Conclusion

Precompensation techniques for Wicner sysiems, which
can be represented by cascadc of linear dynamic and
nonlinear elements, are proposed in this paper. Compared
to the previous approaches using Volierra serics modeling
for compensation of distortions in general class of
nonlincar systems, the proposed approach can reduce the

distlortion of a nonlinear system most effectively, i.e., with

The Journal of the Acoustical Society of Korea, Vol. 15, No. 2E (1996}

minimum computational complexity and fast convergence
rate, If the nonlinear system can be approximated by the
Wiencr model. Futhcrmore, if the saturation character-
istic of a memoryless nonlincar component in the Wiener
systcm can be approximated by the p-law funclion, the
precompensator proposcd in this paper can reduce
nonlincar distortion with only one additional parameter,
it. Although the structures and algonthms for preco-
mpensator in this paper are derived under the assumption
that the nonlinear system can be approximated by the
Wicner model, the precompensator for Hammerstcin sys-

tem can be easily designed in the same manner.
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