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Abstract

In this paper, an adaptive precompensator, which can reduce the distortion of a Wiener system effectively, is proposed. 
The previous techniques for adaptive precompensation, based on the Volterra series modeling to compensate the distortion 
of a nonlinear system, are not suitable for real-time implementation due to high computational burden and slow conver­
gence rate. This paper presents an adaptive precompensation technique for the class of nonlinear systems, which can be 
represented by interconnection of a linear dynamic subsystem and a memoryless nonlinear subsystem, referred to as Wiener 
system. An adaptive algorithm for adjusting the parameters of a precompensator, structured by a Kammerstein model, is 
derived using the stochastic gradient method. Also, an adaptive precompensation technique which can effectively reduce 
nonlinear distortion in /시aw type of saturation characteristics is proposed. The validity of the proposed algorithm is con­
firmed through simulation by applying it to known Wiener systems and a typical loudspeaker model,

I. Introduction

Compensation of nonlinear distortion due to saturation 
in electronic devices or electromechanical components are 
becoming more important as the state of the art in elec­
tronic engineering continues to progress. Followings are 
some applications where small distortion produced by a 
nonlinear component dominates the overall performance: 
(a) Nonlinearity in amplifiers, especially in high data-rate 
communication channels or in satellite communication 

channels, produces intolerable distortion [1], [2]. (b) Louds­
peakers consisting of major nonlinear sources, including 

the non-uniform magnetic field (nonlinear Bl product) 
and the nonlinear compliance of suspension and surround, 
produce the harmonic and intermodulation distortion, 
which are most significant in Hi-Fi audio systems [3].

Two potential adaptive compensation techniques which 
allow us to reduce the distortion of time-varying nonlinear 
channels are adaptive precompensation at the transmission 
side and adaptive equalization at the receiver side [2]. 
Although nonlinear equalization is effective means of 
compensating the distortion of a nonlinear channel, there 
exist situations where it is effective or necessary to place a 
compensator in front of the nonlinear system to be 

compensated. One example would be compensation of 
nonlinear distortion for high-power amplifiers in satellite 
communication channels [1] since it would appear logical 
to reduce nonlinear distortion at the transmitter where it 
occurs and where the transmitted bits are available. The 
other example would be distortion reduction of a loud­
speaker [3], [5] or active noise cancellation [4], where the 
output of the nonlinear system is not an electric but an 
acoustic signal.

Recently, several adaptive precompensation techniques 
have been proposed to reduce nonlinear distortion of a 
time-varying system [1], [5], |6]. However, since these 
techniques are based on the Volterra series modeling, 
they are not practical for real-time implementation due to 
the high computational complexity as well as slow con­
vergence [5], [6|. The block-oriented model is another 
approach fbr modeling nonlinear systems without requiring 
large filter coefficients. This approach is based on the 
assumption that a nonlinear system consists of relatively 
simple subsystems, and that structure of the system is 
known. Especially, the class of systems which can be 
represented by a linear dynamic subsystem followed by a 
zero-memory nonlinear subsystem are called the Wiener 
system. The Hammerstein system consists of the same 
subsystems connected in the reverse order. The systems of 
these forms have been employed to model nonlinear 
characteristics in many areas of signal processing. Also, 
numerous papers concerning on the identification of the 
block-oriented model without having access to signals 
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interconnecting the subsystems have been published [7], 
[8], [이. The subsystems were identified on the basis of 
both the input and output signals of the whole system. 
Whereas various solutions for identifying Wiener (or 
Hammestein) systems with different types of memoryless 
nonlinear subsystems were suggested, no attempt has yet 
been made to compensate the nonlinear distortion of the 
systems.

Therefore, in this paper, an adaptive precompensation 
technique for reducing the distortion of a Wiener system 
is proposed. In Section II, an appropriate preconipensation 
structure (Hammerstein model) for compensating the dis­
tortion of a Wiener system is proposed, and an adaptive 
algorithm for adjusting the coefficients of the preco­
mpensator is derived using the stochastic gradient method 
[10], [11], Here, the memoryless nonlinear subsystem part 
in a Wiener system is assumed to be well approximated 
by a polynomial form of finite order. Also, a special case 
of an adaptive precompensation technique for the situ­
ation where the nonlinear subsystem part is modeled by 
the “-law function is discussed. In Section III, the validity 
of the proposed algorithm is demonstrated via computer 
simulation by applying it to known Wiener systems and a 
typical loudspeaker model. Conclusion is made in Section 
IV.

II. Adaptive Precompensation of Wiener 
Systems

Let u(n) and y(n) represent the input and output 
signals, respectively, of a discrete-time causal nonlinear 
system. Then, the Volterra series expansion for a nonlinear 
system is given by [12], [13], [14]

>(w) = /o + L I L rn2,-,mk)

(1)

where fk 力％,…,”駐)is known as the k-th order 
Volterra kernel. Since the Volterra modeling of a nonlinear 
system requires a great deal of computation [15], only 
nonlinear systems incorporating up to second or third 
order terms have been actually realized [16], [17], Another 
approach is based on the block-oriented model where a 
nonlinear system consists of relatively simple subsystems, 
and the structure of the system is known. The signals 
interconnecting the subsystems are usually inaccessible to 
measurements. If a linear dynamic system is followed by 
a memoryless nonlinear system as shown in Fig. 1(a), the 
block-oriented model is called the Wiener model. In

(b)

Fig. 1. Wiener model and Hammerstein model
(a) Wiener model
(b) Hammerstein model

Hammerstein model, the same subsystems are connected 
in the reverse order as shown in Fig. 1(b). Since the 
Wiener and Hammerstein models can be considered as 
special cases of Volterra series expansion, the Volterra 
kernels for Wiener and Hammerstein models must satisfy 
the relationship given by (2) and (3), respectively [7].

아 九(初1)九(如) … 九0叫) (2)

九(也I,師方…，師大)=

(아/L0払 g … m) for m\=m-L = mk~m
n ,,. ⑶I 0 otherwise 

where c” denotes scaling constant.
Fig. 2 shows the block diagram of a proposed adaptive 

precompensator which can reduce the di이ortion in a 
Wiener system. The proposed scheme is composed of a 
system estimator, which estimates the parameters of a 
Wiener system using an adaptive algorithm, and an 
adaptive precompensator with which the total system 
becomes linearized. If the memoryless nonlinear part of 
the Wiener system can be approximated by a polynomial 
form of finite order, the input and output relationship of 
the system estimator is given by

yM = E uin-k^ (4)

where Nh and Na denote the memory length of a linear 
filter, 瞄 and the order of a nonlinear filter, ab respect­
ively. The coefficients of the system estimator, hk and ab 
are adjusted to minimize the mean square error, E{e\ 
(死)}, between >(w) and y (m) using only the input and 
output signals of the system [7].

Assuming that correct parameters of the Wiener system
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Fig. 2. A block diagram of an adaptive precompensator for
Wiener system

are estimated, an adaptive precompensalor, which is ideally 
the inverse of the Wiener system, can be designed to 
reduce distortion of the Wiener system. Since an appro­
priate structure of the precompensator for Wiener system 
can be easily shown to be the Kammerstein model, the 
precompensator in Fig. 2 is constructed by a memoryless 
nonlinear inverse filter followed by a linear inverse filter. 
By using a polynomial form of finite order as a memoryless 
nonlinear inverse filter, the precompensator can be 

expressed as

N, N,
w(») = E Pi E 方 (n 一i) (5)

1=1 j=I

where Np and Ns denote the memory length of a linear 
inverse filter, /),, and the order of a nonlinear inverse filter, 
s’，respectively. The error of the total system is defined 

by

eT (n) = d(n)~y (n) (6)

where the desired signal, d(n), is the delayed version of 
input signal, r(n), by 6 samples to account for ca나sality 
of the precompensator. The coefficients of the preco­

mpensator is obtained by minimizing the mean square 
error, E{e^. 3)}, of the total system. An adaptive algor­
ithm for updating the coefficients of the precompensator 
is given by applying the stochastic gradient method as 
follows [10], [11]：

知3+ 1) = 力加에-扌 爲例, 1, 2，…,M (7)

sm(w 4-l) = sm(n)-y Vj0z), 1, 2,…,M (8)

where ap and as represent step-size constants of a linear 
inverse filter, pm and a nonlinear inverse filter,队 

respectively. The step-size constant controls stability and 
convergence rate of the algorithm. The term, V in 
(7) represents an instantaneous estimate of gradient of 
E{e^ (”)} with respect to the coefficients of linear inverse 
filter, g，defined by

. de^.(n)
V»-3)三 Ipjn) (9)

(10)——2 eT (n)
Sy (n)

Assuming that the coefficients of the system estimator 
have converged to correct values of the Wiener system, 
the output of the system estimator, y(n), can replace the 
output of the Wiener system, y(n), in (10). Since y(n) is 
a function of input signals, — 1),"(無—2),…，(10) can 
be rewritten by

V牴)=2 erM丄 du(n_r)詩瓦应- (1 D

For simplicity of notation, we define the derivative of
Wiener system as

三
8火刀)

3w(n—r)
(12)

The above equation can be rewritten by substituting (4) 
into (12) as
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N, M
g(r;n) = Yl I dihr( L u(n-k)) (13)

z=i \卜1 7

Also, the derivative of a precompensator output with 
respect to 也，the second part of the summation term in
(11), can be defined as

bm(r\n)三
（斜―并） (14)

Then, (14) can be rewritten by substituting (5) into (14)

as

N, 
= £ s’ x} (15)

Finally, an adaptive algorithm for the linear inverse part 

of the precompensator can be obtained by substituting 
(11), (13), and (15) into (7) as follows：

M N.
Z切3 +1) = PmM + dp eT(n) E E I di hr

r=\ 1= 1

and (21) into ⑻ as follows：

M N.
sm(n +1) = sm(n) + as eT(n) £ I athr 

r= 1 /= 1
M 、 N，

(£ 加t uCn-k)V~l Pi xm (n-r~i). (22)

Note that, in order to obtain the coefficients of the 
nonlinear inverse filter, s*  of the precompensator, both 
the coefficients of the linear inverse filter, of the 
precompensator and the estimates, hk and of the sys­
tem estimator are required. Consequently, (16) and (22) 
constitute an adaptive algorithm for the precompensator 
which can reduce the distortion of a Wiener system.

Nk N,
hk "(算一切)“서 £ SjXj (16)

An adaptive algorithm for the nonlinear inverse part of 
the precompensator can be derived in a similar way. The 
term, VSm(n), given in (8), is defined by an instantaneous 
estimate of the gradient of E{e^. («)} with respect to the 
coefficient of the nonlinear inverse filter, as

a碎3) 

dsm(n)

=—2 er(n)

(17)

(18)

100
Also, (18) can be expressed as

VSh(w) = -2 eT(n) E 
r=l

8 

du(n—r)
3“ 3— 户) 

Ssm(n)
(19)

Since the first part of summation term in (19) has already 
defined in (12), we define, here, the second part oi sum­
mation term in (19) as

(띰)
,,,P
"
U
6
을

cm(r\n)三
du(n~r)

(20)

Then, (20) can be expressed by substituting (5) into (20)
as

(21)

60

40-

20-

0-

-20-
0.0

80

0.1 0.2 0.3 0.4 0.5
Normalized Frequency

(b)

一누一 Mu = 0

. Mu = 10

■ Mu = 255

8 :y (死) 

^sm(n)

方(尸；门)=£ Pi xm (n-r — i).

Finally, an adaptive algorithm for the nonlinear part of 
the precompensator is obtained by substituting (13), (19),

Fig 3. Characteristics of the 妇aw function
(a) input-output relationship for the /시aw function
(b) frequency responses of the 妇aw function
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So far, the memoryless nonlinear part of the Wiener 
system and that of the precompensator are modeled by a 
polynomial form of finite and known order, which can 
provide good approximation for systems with smooth 
nonlinear characteristics. However, in order to accurately 
model saturation characteristics, typical phenomena of 
memoryless nonlinear systems, a polynomial function 
with infinite order is generally required. Thus, in this sec­
tion, an adaptive precompensation technique, which 
enables us to avoid this difficulty if the Wiener system 
possesses the /시aw type of saturation characteristic, is 
proposed. Fig. 3 shows input-output relationship for the 
/i-law characteristic and corresponding frequency responses 
for different values of 卩.Here, the value of 卩 controls the 
degree of nonlinearity in Wiener systems. For instance, a 
Wiener system with the value of /i —0 reduces to a linear 
system. Note that a polynomial function with infinite 
order is generally required to model the 化law character­
istic in Fig. 3 whereas o이y one parameter, 卩, is sufficient 
to model the nonlinear part of the Wiener system. A sys­
tem estimator with the /z-law function as a memoryless 
nonlinear part is given by [18] 

〜 

w (w) = 52 u(n — k) (23)
k= 1

y(n) = umax-------力---------------- -stsn(u (n)\

-1 <W W/ "max < 1 (24)

where u (w) and y (n) denote an output signal passin흥 

through only the linear part, hk, and an output signal 
after the nonlinear part, modeled by the /i-law function, 
of a system estimator, respectively. Also, wmax represents 
the maximum value of the input signal, u (w), for the 诉 

-law function. Also, log and sign( -) represent the natural 
logarithm and the function which takes only si응n of the 
argument, respectively.

An updating algorithm for a parameter, /i, of the “-law 
function and coefficients, hky of the linear filter in the sys­
tem estimator can be obtained by minimizing the mean 
square error, E{e^ (w)), between the output signal of the 
Wiener system, yhi), and the output signal of the system 
estimator, >(n), as follows II이, Ill)：

4(也 + 1)=加3)-。0 V知，Z= 1, 2,…,M (25)

+ = (26)

where or and o% denote step-size parameters governing 
convergence rates of the linear filter and the .-law func­

tion, respectively. Also, V 如 and V “ represent instan­
taneous estimates of gradients of 硏 with respect to 
linear filter coefficients and 卩,respectively. If we define 
the error signal as

W = >(n)->(w). (27)

The instantaneous estimates of gradients, V& and V"，can 
be obtained by using (23) and (24) as follows：

^h,= ~2e](n) 끼 (28)
oni

z. j\rhf -J, —  ft \W \fl IJJ
logd +^)-log(l +^l«(n)|/ttmax)

=-2et(n) “max

二—巨씌一 logd +“)一次配也亟也釦

就 max'印 3 3)I 1 +#

(10g(l +“))2

• sign(u (n)). (29)

Thus, by substituting (28) and (29) into (25) and (26), the 
parameters of the system estimator can be obtained.

Since there exists an exact inverse function of the /i-law 
function, we need an adaptive algorithm only for the lin­
ear inverse filter, Q, of the precompensator. If we define 
% (m) as a signal passing through the inverse of the /z-law 
function, then the output signal of the precompensator 
can be expressed as

N, 〜
w(w) = L Pi x (n-i) (30)

i = I

where

〜 〜E \
£(”)= 쁘丄 {(l+“) J -I } ・S场(* *(”)) (31)

Assuming that the output signal of the system estimator, 
y(n), w이 1 approximates the output signal of the Wiener 
system, y(n), the total error can be approximated by

eT in)任 d(n)-y(n). (32)

Finally, an adaptive algorithm for the linear inverse filter 
of the precompensator is obtained by minimizing E {仑;(处)} 

with respect to pi as follows：
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/)OT(n +1) = m= 1, 2,…,7% (33)

where

Vp„= -2er(n) 一
opm

n* 〜
~2eT(n) /z| E hk'x (n-k-q)\

=-------------------------- -- ------- — (34)
log(l +“)(1 +户| U (薛)1/"max 

虬 〜
-sign ( £ 知 0z-^—g)).

In summary, for Wiener systems possessing the /z-law 
type of saturation characteristic, the precompensator can 
be designed by following the steps:

(i) estimate the parameter, “，and filter coefficients,
of the system estimator by iterating (25)-(26) and 
(28)-(29)

(ii) estimate the coefficients of the linear inverse filter, A, 
by inserting the estimated values from (i) into (34) 
and by iterating (33)-(34)

(iii) construct the precompensator by inserting the 
estimated values,卩 and,  into (3O)-(31)*

(iv) repeat (i)-(iii) if the system is time-varying

IH. Simulation

In this section, the feasibility of applying the algorithms, 
proposed in section II, to reduction of distortion in 
nonlinear systems is demonstrated by computer simu­
lation. The first two examples are concerned with the 
compensation of distortion in nonlinear systems using 
Wiener model with a polynomial form of finite order. In 
the third example, distortion of a nonlinear system is 
compensated by Wiener model with the “-law function.

A. Precompensation of a known Wiener system
The nonlinear system used for this simulation is a 

known Wiener system represented by interconnection of a 
linear subsystem of 10 memory length, given by (35), and 
a memoryless nonlinear subsystem formed by the third-order 

polynomial, given by (36).

u (m) = 0.0 • m(w —1) + 0.4 - w(n —2) + 0.08 • w(n —3)
+ 0.15 • w(m-4)
+ 0.05 - m(m-5) + 0.01 - w(»-6) + 0.005 - «(w-7) (35) 
4- 0.002 • w (w — 8) + 0.001 • «(w — 9) + 0.0005 - w (w — 10)

y(n)= 1.5 • w (w) + 0.08 - u 2(m) +0.02 • u 3(n) (36)

0 0.1 0.2 0.3 0 4 0.5

Fig. 4. Input and output spectrum of the known Wiener system 
(input: a sine wave with normalized frequency 0.08)
(a) input spectrum
(b) output spectrum of the known Wiener system
(c) output spectrum of the system estimator
(d) output spectrum when the proposed precompensator 

is used

In order to compensate the distortion present in this system, 
the parameters of the Wiener system, given by (35)-(36), 
were first estimated by the system estimator, The memory 
length of the linear filter, M, and the order of the 
nonlinear filter, Na, in the system estimator were assigned 
to the same values as the ones of the Wiener system, 10 
and 3, respectively. The input signal used for simulation 
was a white random signal with uniform distribution over 
[-1, 1]. After having checked the convergence of mean 
square errors in system estimation, we used the adaptive 
algorithm, derived in section II, to obtain the coefficients 
of the precompensator. Here, the order of the nonlinear 
inverse filter, M, and the memory length of the linear 
inverse filter, in the precompensator were set to 5 and 

20, respectively. The parameters of the precompensator 
were estimated by applying a while random signal with 
uniform distribution. Next, in order to investigate the 
performances of the system estimator and the preco­
mpensator more clearly, we applied a sinusoidal signal to 
the precompensated system and compared its result to the 
case where no precompensation was performed. Fig. 4(a) 
shows the spectrum of an input signal with a normalized 
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frequency 0.08 and amplitude 2. Fig. 4(b) shows 나ic cor­
responding ,output spectrum when no precompensation 
was performed. Note that the linear distortion occurs at 
the same frequency as the frequency content of the input 
signal while nonlinear distortions occur at the second and 
third harmonics due to polynomial form of nonlinearity 
up to third order. By comparing it with Fig. 4(c), which 
shows the output spectrum of the system estimator, one 
can see that the system estimator works perfectly. Fig, 4 
(d) shows the output spectrum when the proposed 
precompensator was applied to the Wiener system. Note 
that the second and third harmonic components are con­
siderably reduced by about 9 dB and 21.5 dB, respect­

ively. The number of multiplications required for the 
precompensation part in the proposed approach is 25 
while 285 multiplications, even with taking into account 
the symmetric property of Volterra kernels, is needed to 
implement the precompensator part in the previous 
approaches utilizing the Volterra series expansion.

B. Precompensation of a loudspeaker model
In this section, the proposed precompensation technique 

is applied to reduction of distortion in a loudspeaker 
model. The principal causes for nonlinear distortion of a 
loudspeaker at lower frequencies are nonuniform Bl 
product versus the voice coil, and nonlinearities in the 
compliance of the suspension and surround [3]. The 
state-space equation for a typical loudspeaker model 
taking into account these nonlinear effects is given by [5]

-0.1 0 -0.2 [0.4 '
X3 + i) = 0 1 1 X0Z)+ 0 u(n)

.0.6 -0.5 -0.15 0
(37)

—0.04 x2 (n) x3 (n) —0.05 (m)

—0.08%2 M + 0•이 X](n)x2(n) + 0.02%i (h) x22 0z)

y(n) = (0 1 0)r X(n)

where u(n), y(n), and X(n) denote an input signal, an 
output signal, and a state vector, respectively. The third 
term on the RHS of (37) represents the main source of 
nonlinear distortion caused by the nonlinear Bl factor 
and the nonlinear suspension of a loudspeaker. Fig. 5 
shows the second-and third-order Volterra kernels of the 
loudspeaker model, which were estimated by approximat­
ing the state-space equation in (37) with the V이terra 
series expansion. The memory lengths of the first-order 
Volterra kernel, second-order Volterra kernel, and third-

Fig. 5. Volterra modeling of the typical loudspeaker model
(a) fir이-order Volterra kernel (/, (/))
(b) second-order Vol terra kernel
(c) third-order Volterra kernel ((z))

order Volterra kernel were set to 17, 10, 10, respectively. 
Fig. 5(a), (b), and (c) show the first-order Volterra kernel, 
second-order Volterra kernel, and third-order Volterra 
kernel with the first argument set to 5, respectively. From 
Fig. 5, one can see that an approximate second-order 
Volterra kernel and third-order Volterra kernel can be 
obtained by multiplying the first-order Volterra kernel as 
응iven by (2), implying that Wiener modeling of a loud­
speaker is adequate.

As in the previous simulation, the loudspeaker model 
was first approximated by the system estimator (Wiener 
model with A% = 15 and Na = 3) and then linearized by the 
precompensator (Hammerstein model with Np = 20 and 
TV, = 5), all with a random input. Next, an sinusoidal signal 
was applied to the precompensated system to see how 
well the system estimator and the precompensator perform. 
Fig. 6(a) and (b) show the spectrum of an input signal 
with a normalized frequency 0.08 and amplitude 2, and 
corresponding output spectrum, respectively. Shown in 
Fig. 6(c) is the output spectrum of the system estimator 
(Wiener model) which approximates the output spectrum
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(a)

(b)

(d)

(e)

(c)

Fig. 6. Input and output spectrum of the typical loudspeaker 
model (input: a sine wave with normalized frequency 0.08)
(a) input spectrum
(b) output spectrum of the typical loudspeaker model
(c) output spectrum of the system estimator
(d) output spectrum when the proposed precompensator 

is used
(e) output spectrum when the previous approach is used

Fig. 7. Input and output spectrum of the typical loudspeaker 
model (input: a sine wave with normalized frequencies 
07 and 0.08)
(a) input spectrum
(b) output spectrum of the typical loudspeaker model
(c) output spectrum of the system estimator
(d) output spectrum when the proposed precompensator 

is used
(e) output spectrum when the previous approach is used

of the loudspeaker model. From Fig. 6(d), one can see 
that nonlinear distortions at the second and third har­
monic frequencies are considerably reduced by about 13.7 
dB and 23.3 dB, respectively, when the proposed preco­
mpensator is used. By comparing this result with Fig. 6 
(e), obtained by the previous approach [5], it can be said 
that the precompensator proposed in this paper can 
reduce the distortion of a loudspeaker model efl Actively, 
even with a small number of filter coefficients. Note that 
the number of multiplications required for the preco­
mpensation part in the proposed approach (previous 
approach) is 25 (292 when symmetric property is taken 
into account). In general, computational burden for the 
proposed approach increases linearly as the order and 
memory length of the model increase, while it increases 
exponentially for the previous approach using the Volterra 
series expansion. On the other hand, Fig. 7 shows the 
results of precompensation when intermodulation distor­
tion occurs. In terms of Wiener modeling and preco­
mpensation of the loudspeaker, all results are similar to 
난le ones in Fig. 6. Note that about 13.6 dB of inte­

rmodulation distortion is reduced by the proposed 
approach whereas about 12.6 dB is reduced by the pre­
vious approach.

C. Precompensation Wiener model with the //-law 
function

The nonlinear system used for this simulation is a 
known Wiener system represented by cascade of a linear 
subsystem of 3 memory length, given by (38), and a 
memoryless nonlinear subsystem formed by the “-law 
function (/i= 10), given by (24).

?(n) = 0.2 w(m-1)-0.5 w(n-2) + 0.2 u(n~3) (38)

As in the previous simulation, we, first, estimated the 
parameters of the Wiener system,知 and by step (i) 
and, then, adjusted the parameters of the linear inverse 
filter (Np = 40) in the precompensator by st^p (ii), all with 
random inputs. Fig. 8(b) shows the output spectrum 
when an input signal with a normalized frequency 0.04
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Fig. 8. Input and output spectrum of Wiener system with /z-law 
function (input：a sine wave with normalized frequency 
0.04)
(a) input spectrum
(b) output spectrum of the Wiener system
(c) output spectrum when the proposed precompensator 

is used

and amplitude 1, shown in Fig. 8(a), was applied to the 
Wiener system. From Fig. 8(c), one can see that the 
proposed precompensation technique with the inverse “ 
-law function is very effective in reducing the distortion 
of a saturation component if its input-output character­
istic can be approximated by the /시aw function. Note 
that the number of parameters to be estimated for the 
precompensation part is minimal, i.e., plus one.

IV. Conclusion

Precompensation techniques for Wiener systems, which 
can be represented by cascade of linear dynamic and 

nonlinear elements, are proposed in this paper. Compared 
to the previous approaches using Volterra series modeling 
for compensation of distortions in general class of 
nonlinear systems, the proposed approach can reduce the 
distortion of a nonlinear system most effectively, i.e., with 

minimum computational complexity and fast convergence 
rate, if the nonlinear system can be approximated by the 
Wiener model. Futhermore, if the saturation character­
istic of a memoryless nonlinear component in the Wiener 
system can be approximated by the /니aw function, the 
precompensator proposed in this paper can reduce 
nonlinear distortion with only one additional parameter, 
卩.Although the structures and algorithms for preco- 
mpensator in this paper are derived under the assumption 
that the nonlinear system can be approximated by the 
Wiener model, the precompensator for Kammerstein sys­
tem can be easily designed in the same manner.
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