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Design of Subband Codecs Using Optimized Vector Quantizer

Innho Jee*

ABSTRACT

This paper provides an approach for representing an optimum vector quantizer by a scalar nonlinear gain-plus-additive 
noise model. The validity and accuracy of this analytic model is confirmed by comparing the calculated model quantization 
errors with actual simulation of the optimum Linde-Buzo-Gray(LBG) vector quantizer. Using this model we form MSE 
measure of an M-band filter bank codec in terms of the equivalent scalar quantization model and find the optimum FI R 
filter coefficients for each channel in the M-band structure for a given bit rate, given filter length, and given input signal 
correlation model. Specific design examples are worked out for 4-tap filters in the two-band paraunitary case. These theor­
etical resets are confirmed by extensive Monte Carlo simulation.

I. Introduction

The technique of Subband Coding(SBC) has become 
popular for low rate speech coding, still image, video, and 
High Definition Television(HDTV) signal codingfl]. The 
basic idea of SBC is to split up the frequency band of the 
signal into a number of subbands and them to encode 
each subband separately. Usually PCM or DPCM coder 
is used to encode the subbands, where the bit rate of each 
subband is determined by a bit allocation procedure. 
Thus, in the actual system, the signals are quantized be­
fore transmission at the receiver side and reconstructed 
by the synthesis filter bank. Recently, Haddad|9] pro­
vided a thorough analysis of the quantization elTects in 
general 几/-band subband coding systems using the poly­
phase approach. According to Shannon's rate distortion 
theory, better results are always obtained when vectors 
rather than scalars are encoded. Most researchers have 
focused on the error in the quantizer, but not on the 
overall reconstruction error and its dependence on the fil­
ter bank. This purpose of this paper is to provide a 

thorough analysis of the vector quantization effects in 
general M-band subband coding systems using the poly­
phase approach. This paper demonstrates that the scalar 
nonlinear gain-plus-additive noise quantization model can 
be used to represent each vector quantizer in an M-band 
subband codec. The validity and accuracy of this analytic 
model are confirmed by comparing the calculated model 
quantization errors with actual simulation of the opti-
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mum LBG vector quantizer. We computer the mean 
squared reconstruction error(MSE) which depends on N 
the number of entries in each codebook, k the length of 
each codeword, and on the filter bank coefficients. V/e 
form this MSE measure in terms of the equivalent scalar 
quantization model and find the optimum FIR filter 
coefficients for each channel in the M-band structure for 
a given bit rate, given filter length, and given input signal 
correlation model. Specific design examples are worked 
out for 4-tap filters in the two-band paraunitary case. 
These theoretical results are confirmed by extensive Monte 
Carlo simulation.

II. Requirements for Optimized Scalar 
Quantizer

For the Lloyd-Max pdf-optimized scalar quantizer, Fig. 
1(a) shows the block diagram representation of the pdf- 
optimized quantizer where v is the signal to be quantized, 
v is the quantized output, and the v is the quantization 
error. It can be shown that the quantization error is un­
biased and that the error is orthogonal to the quantizer 
output[6]

E\v] = Q, E\vv]=Q. (1)

But the quantization error v is correlated with the input v 
so that the variance of the quantization error is

居 (2)

Thus the simple input-independent-additive noise model
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Fig 1. (a)Pdf-optimized quantizer, (b)gani-plus-additive noise model.

is only an approximation to the pdf-optimized quantizer. 
Fig. 1(b) shows the gain-plus-additive noise model rep­
resentation advanced by Jayant and Noll[6]. For this 
model we can impose the conditions in (1), and force the 
fictitious random noise error r and v to be uncorrelated 
by choosing the gain and the equivalent noise variance as

(丁 2

a= 1------，， 成(3)
J

Note that both 次，and are new input signal dependent. 
From rate distortion theory[6], the quantization error 
variance 昂 for the pdf-oplimized quantizer is

房=B(R)2F 爲, (4)

where 研人)depends on the pdf of the input signal v and 
R is the number of bits used in the quantizer.

ID. Requirements for Optimized Vector 
Quantizer(VQ)

The properties of a VQ optimized for mean squared di­
stortion error over a frame are[5]

E{v} = 0 E{vlv)^0 (5)

where v = Q(v) is the vector quantizer output, —以 
Eqn.(5) demonstrates that optimal quantization can focus 
on zero mean random input vectors without loss of gen­
erality and the quantized vector is orthogonal to the 
quantization error vector. The consequence of this is that 
the quantization error v is always correlated with the in­
put v if the vector quantizer is optimum. This implies that 
a model of vector quantization as the addition of an inde­
pendent "noise” vector to the input vector cannot be 
valid or at least cannot be strictly correct.

IV. Derivation of Form비a for Distortion in 
Optimal Vector Quantizer

The performance for an TV-level A-dimensional vector 

quantizer can be measured by the mean square distortion, 

D = 느 £||y — 2(t;)||2, where || -1| denotes the usu사 h norm. 

Wc wish to choose V\, to minimize D. The ^-dimen- 
sional 2가" power distortion-rate function of an optimal 
vector quantizer in high resolution is given in [4] by

D$q(R) = C& 2)2一。샤m I j[p(v)]k/{2^k}dv]{2+k}/k. (6)

The constant C(k, 2) is a function of the vector dimen­
sion k and represents how well cells can be packed in k- 
dimensional space. The density function /X으) is the k- 
dimensional joint pdf of the vector process.

1. Approximate Optimized Vector Quantizer Model

According to Jayant and Noll[6], the short-time pdf of 
a speech segment can be approximated by a Gaussian 
pdf. The vector to be quantized is assumed from consecu­
tive samples of an autoregressive stationary random sig­
nal. This model is a good model for speech-like signals. 
The mean squared quantization error averaged over a 
frame in optimized vector quantizer coding can be com­
puted approximately using the asymptotic distortion-rate 
function for high-rate quantization derived for a Gaus­
sian random signal|3],

D財 R T2-2R/k(detr)l/k 스 al (7)

where k, R and「denote respectively the vector dimen­
sion, the number of bits allocated to the quantizer, and 
the covariance matrix of the input signal ； denotes the 
mean squared quantization error averaged over a frame 
in optimized vector quantizer, and t is a correction factor 
which, for a Gaussian pdf, is

T = 2nck(\ +；)“2 + i (8)
k

where c is the quantization coefficient for the VQ[2]. The 
correction factor r depends on the coefficient of quantiz­
ation for VQ and on the dimension k. There are a num­
ber of approximations based on lower or upper bounds. 
The results in this paper are based on the values given by 
the Voronoi lattice upper bound[2]. It is computationally 
burdensome to directly estimate det T. However, using 
the Toeplitz distribution theorem[6],

lim d况「休= exp"」一「logeStAeJW)dw] =(9) 

where Sw(e}W) is the power spectral density of the random
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Fig 2. Vector quantizer.
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Fig 3. A finite memory optimal predictor.

signal {v(n)} and 兄脳„ the energy of the iminimum pre­
diction error. When the vector dimension k and the pre­
dictor order are reasonably large, the quantizaiion error 
in Eqn.(7) can be further simplified to

D歯ML띠 W (10)

where a} = E{ \ vp(n) \2} is the variance of the prediction 

error sequence using a finite memory optimal predictor in 
mean square sense[6]. A finite memory optimal predictor 
is shown in Fig. 3. The weights {%} are linear predictor 
coefficients and M is the predictor order.

We show that this distortion measure equals Dyg of Eqn. 
(10). Assume E{ I I2} is the same for all i
in that block. Can we use DyQ of Eqn.(10) as this me­
asure? Is it true that v(n—i) is orthogonal to as 
required by Eqn.(5)?, where v(i) 一。(z)? Thus, we cal­
culate E{v(i)} and E{v(f) vii)} as follows. First, 500,000 
samples of an AR(1), input signal v(n) is concatenated 
into a sequence of vectors. Then, we create a codebook 
using the LBG algorithm. Second, the quantized signal v 
(n) is made from VQ encoding method. Third, the error 
signal v(n) is observed. Then we calculate the following

items: E {v{i)} ©G)for each block ； then aver­

age over all blocks. E{v(i) v(i)}二 v(i) v(i) for 

each block ； then average over all blocks. The results of 
this simulation are shown in Table I. Therefore we can 
conclude that E{v(i)} 0, 5(/)"(/)} 으 0. So, we can

use DvQ = Tl~2Rlk a] = ~~ £二宀…)in the 

pdf-optimized vector quantizer. Comparing Eqns.(l) and 
(3) for the scalar quantizer with Eqn.(10) for VQ, we see 

that if 药 of VQ obtained from 二房,per block

and averaged over all blocks equals 房 of the scalar qu­
antizer, we can say

房 杖小旳球
a= 1----- -  = 1---------- ------ (12)

2. Gain-Plus-Additive Noise Model for VQ

We 아】ow that Eqns.(l) and (3) for the pdf optimized 
scalar quantizer can also be used to represent the optimiz­
ed VQ. The distortion per frame in the LBG classification 
algorithm is

where t, which depends on k, the vector dimension, is 
given in [2|. Also, from the theory of linear optimum pre- 
diction[6], = £{(y — z?)2} and the optimal prediction er­
ror is represented as

서e=K=(島 (13)

1 가

R I —n—(k~ I)
(11) Thus

Compensator

Fig 4. Optimum M-channel FB for simulation with AR(1) gaussian 
input.
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a=\-T2~2Rfky} (14)

where y； is the "spectral flatness measuren which is the 
reciprocal of the maximum prediction gain

尤=師汕{8 兄}/b《 = \7nax{^)Gp}]~x (15)

ft as predictor order becomes co, where Gp is the prediction 
gain of the predictor. We calculate in the following 
way. Consider a zero-mean process {x(n)} with power spe­
ctral density Sx/eiw). This signal is filtered by 泗).Its 
filtered signal spectral density is S从事钮)=I H(eiw) \2 Sxx{ejw) 
and 时 is

exp[P loge&，(#初)dw\
•) 271 J -jr

y： =------------------------------------------- (i 6)
r s奶(球)血

2n J -rt

Eqn.(14) gives us a theoretical value for a. Then use of 
Eqn.(12) gives This theoretical value is
compared with simulated quantization error variance. Tn 
our case, &(bit rate) is small and k = 8(vector dimension 
of VQ) is also small. Therefore to improve the accuracy 
of the model we introduce an empirically determined cor­
rection factor 8 which depends on R and k. Hence

”=l—r2 或/Dy, (17)

The optimized VQ mean squared error is now

成=r2-2㈤D尤兄 (18)

V. Model Validation

1. Codebook Design；An input AR(l)(p=0.95, mean=0, 
var = 1.0) signal is passed through a 4-tap Binomial Qu- 
adrature-Mirror-Filter(QMF)[l]. This filtered signal is used 
as a training signal for codebook design using a LBG 
classification algorithm with a mean squared error cri­
terion. This algorithm converges iteratively toward a 
locally optimal codebook. We choose 如=8 for vector di­
mension, TV = 32, and 64 for codebook addresses and n = 
500,000 samples for training sequences.

2. Simulations；!)A test sequence of 500,000 samples of 
AR(1) gaussian input signal is used for simulation. Since 
this test sequence is generated by different seed, this se­
quence is not the same as that used in the codebook de­
sign. These test sequences are passed through a 4-tap Bi­
nomial QMF, and then arranged as a sequence of k~ 

dimensional vectors. The quantized signal is obtained 
using the LBG codebook. So, we can calculate
E{ v(i) r(z)}, and the quantization error E{ \ v(f) |2} as de­
scribed previously. Sim니ation results are shown in Table 
I. 2)And compared with the theoretical quantization error 
calculated using gain-plus-additive noise model. Eqn.(14) 
gives us a theoretical value for a. 3)We compare E{ I vd) 12} 
from simulations with af from theoretical scalar gain-plus- 
additive noise model Eqn.(18). Thus, we obtain 8. These 
results are shown in Table II with the correction factor b 
equal to zero. An even closer match can be found by 
selecting D from the empirically obtained table, as shown 
in Table III. From these simulations we conclude that the 
optimum vector quantizer in an M-channel subband coder 
can be modeled by the scalar gain-plus-additive noise 
scalar model.

p = 0.95) for LBG vector quantizer.
Table I. Simulation results using AR(1) (n = 500,000 samples,

Bit rate Codebook E{0(i)|2}
0.625 N = 32, A = 8 -3.57E-4 8.97E-4 1.9651 0.1187
0.75 7V = 64, 48 •2.25E-4 2.32E-3 1.9651 0.0861

Table II. Comparision E시粉0)|2}就”, from test on VQ exper­
imentally with 展 from equivalent scalar gain-plus- 
additive noise model theoretically.

Bit rate (R) 药

0.625 0.1187 0.1152
0.75 0.0861 0.0969

Ta비e HI. Values of S for AR(1) (p = 0.95) gaussian input. R is 
the VQ rate in bit/sample, k is the VQ dimension.

R 0.25 0.5 0.75 1.0
k = 8 0.5450 0.1499 -0.0853 -0.2434
k= 12 0.1323 -0.2855 -0.5371
k = 16 -0.1476 -0.5780

VI. Sam미e Optimum Filter Bank Design

Our design problem is to find the optimal filter bank 
which minimizes the MSE for an AR(1) input signal with 
coit이ation coefficient p and a total bit allocation con­
straint. In [이[10], it is shown that the MSE for a Perfect 
Reconstruction(PR) filter bank is

MSE乏风+兄

1 M -\ 1 M-\
= p £ (⑶s「T)2兄，= — E 2成广(19)

These terms o%, al are called the signal distortion and the 
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random noise component of the MSE respectively. And $ 
is called optimal compensator,房;is the variance of the 
fictitious random noise in the Zth channel, a； is function 
of FIR filter coefficient and Under perfect recon­
struction constraints, 0号 measures the deviation from per­
fect reconstruction due to the quantizer and compensator. 
This decomposition of the total MS quantization error 
allows us to analyze each component error separately. 
For the paraunitary solution, s, - 1. In our example, M- 
2, and a filter with 4 taps {a, b, c, d} is used. Here,

兄=1 +2p(沥 +阮 + cd) + 2p3(處),兄=2 — 破 (20)

~ao)a^, °；=明(1 一(21)

Each quantizer takes only integer bits per channel, the 
high-pass receiving at least 1 bit, and the low-pass chan­
nel at most 11 bits, for two codebooks of 2,2048 words 
each. Our optimization algorithm tests for all possible bit 
combinations for the given average bit rate R bits/sam- 
ple, calculates the optimal filter coefficients, compensators, 
and MSE. It chooses the one with the minimum MSE 
among them. This is implemented by using IMSL Li- 
brary(DNCONF). These anaytical results were confirmed 
by inside training simulation using 64,000 samples of AR 
(1) gaussian input.

Our calculation procedure is as follows:

(a) Fix R, k, p, codebooks; calculate t.

(b) Choose initial 如(&) using 4-tap Binomi시 QMF.
(c) Calculate 已，a,房,，from Eqns.(16), (17), (20), (21) 

respectively.
(d) Express MSE(Eqn.(19)) in term of 4 filter parameters； 

Calculate ho(n) using DNCONF algorithm. Calculate 
MSE.

(e) If (MSE)i M (AfSE)i-\, go to step (c). If not, stop.

The analysis and simulation results for the paraunitary 
FB are 안town in Table VI(a), (b) for the input correlation 
p = 0.95, 0.75. From our simulation!?] we know that the 
correction factor 6 affects variation of MSEsim within 0.5 
percent and the optimal filter coefficients are quite insen­
sitive to changes in 8 value. So, we ignore the correction 
factor b. Table VI(a), (b) lists the optimum integer bits 
allocated to each channel Ro, R, MSE, the theoretical 
calculation(an시ysis) of the output MSE based on (19), 
and the simulation results, MSESim. The corresponding 
optimal filter coefficients are shown in Ta이e V(a)(b). As 
seen from Table V, the optimal filter coefficients are quite 

insensitive to changes in average bit rate R although the 
output MSE is hig마y dependent on them. We n이e that 
the random noise is the dominant component in the 
total output MSE when compared with The simu­
lation results closely match the theoretical ones.

Table IV. Optimum bit allocations, theoretical and simulation re­
sults of the output MSE for the paraunitary FB at (a) 
p = 0.95, (b)p = 0.75.

R Ro R MSE MSEsim
0.5 7 1 0.088010 0.087281

0.625 9 1 0.063701 0.063123
0.75 11 1 0.046211 0.045602
1.0 11 5 0.038583 0.038246

(a)

(b)

R Ro R\ MSE MSEsim
0.5 7 1 0.317896 0.292531

0.625 9 1 0.247525 0.229685
0.75 11 1 0.197778 0.178358
1.0 11 5 0.145828 . 0.138982

(b)p = 0.75.
Table V. Optimum paraunitary filter coefficient 거t (a)p = 0.95,

R M0) 你1) 你2) 碱3)

0.5 0.488441 0.832218 0.226277 -0.132805
0.625 0.488484 0.832219 0.226200 -0.132772
0.75 0.488485 0.832219 0.226199 -0.132771
1.0 0.488501 0.832216 0.226180 -0.132765

(a)

(b)

R 五 o(0) 膈I) 版2) 妃3)

0.5 0.50929806 0.81527놔67 0.23372086 9.14600427
0.625 0.50929805 0.81527467 0.23372088 ■0.14600428
0.75 0.50929806 0.81527467 0.23372088 ■0.14600428
1.0 0.50930305 0.81527319 0.23371601 -0.14600293

Performance comparison of the filter banks

Optimum design of biorthogonal filter banks with simi­
lar AR(1) input and bit constraints can be found on [7]. 
We observed that optimum paraunitary and biorthogonal 
filter coefficients are insensitive to changes in average bit 
rate R and in input correlation p although the output 
MSE is highly dependent on them. The MSE in biortho­
gonal filter bank is lower than that for the paraunitary 
filter bank at input correlation p = 0.95； but almost equal 
at input correlation p-0.75. We next compare the opti­
mum vector quantizer with the optimum scalar quantizer 
in term of robustness, compression and MSE.
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1. Robustness: For the scalar case the paraunitary filter 
coefficients are robust and the biorthogonal filter coef­
ficients are very sensitive to changes in input stat­
istics and bit rate. But for VQ both the paraunitary 
and the biorthogonal filter coefficients are insensitive 
to changes in bit rate for fixed input signal statistics.

2. Compression and MSE：For p = 0.95 and average bit 
rate of 1 bit/sample, we found that in the scalar case 
the MSESim of 6-tap paraunitary FB is 0.3521838 
and for VQ the MSEsim of 4-tap paraunitary FB is 
0.038144. So we conclude that the optimum vector 
quantizer is superior to optimum schalar to optimum 
scalar quantizer in terms of compression and MSE.

W. Conclusions

This paper has presented an approach for modeling of 
optimum vector quantizer by a scalar nonlinear gain-puls- 
additive noise model. The validity and accuracy of this 
analytical model is confirmed by comparing the calculat­
ed quantization errors with actual simulation of the opti­
mum LBG vector quantizer. We have presented specific 
design examples for 4-tap paraunitary filters in two-band 
case using this model.
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