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Design of Subband Codecs Using Optimized Vector Quantizer

Innho Jee*

ABSTRACT

This paper provides an approach for representing an opiimum vector quanlizer by a scalar nonlincar gain-plus-additive

noise model. The validity and accuracy of this analytic model is confirmed by comparing the calculated model quantization

errors with actual simulation of the oplimum Linde-Buzo-Gray(LBG) vector quantizer. Using this model we form MSE

measure of an M-band filter bank codec in lerms of the equivalent scalar quantization model and find the optimum FIR

filter coefTicients for each channel in the M-band structure for a given bit rate, given fifter length, and given input signal

correlation model. Specific design cxamples arc worked out for 4-tap filters in the two-band paraunitary case. These theor-

etical resulls are conftrmed by extensive Monle Carlo simulation.

1. Introduction

The technique of Subband Coding(SBC) has become
popular for low ratc speech coding, still image, video, and
High Dcfinition Tclevision(HDTV) signal coding{l]. The
basic idea of SBC is to split up lhe frequency band of the
signal into a number of subbands and them lo encode
each subband separately. Usually PCM or DPCM coder
is used to encode the subbands, where the bit rate of each
subband is determined by a bit allocation procedure.
Thus, in the aclual system, the signals are quantized be-
fore transmission at the receiver side and reconstructed
by the synthesis filter bank. Recently, Haddad|9) pro-
vided a thorough analysis of the quantization effects in
general M-band subband coding systems ustng the poly-
phase approach. According to Shannon’s rate distortion
theory, better results arc always obtained when vectors
rather than scalars are encoded. Most researchers have
[ocused on the error in the guantizer, but not on the
overall reconstruction error and its dependence on the fil-
ter bank. This purpose of this paper is lo provide a
thorough analysis of the vector quantization effects in
general AM-band subband coding systems using the poly-
phase approach. This paper demonstrates that the scalar
nonlinear gain-plus-additive noise quantization model can
be wsed (o represent each vector quantizer in an AM-band
subband codec. The validily and accuracy of this analytic
model are confirmed by comparing the calculated model

quantization crrors with actual simulation of the opti-
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muin LBG vector quantizer, We computer the mean
squarcd reconstruclion crror(MSE) which dcpends on &
the number of entries in each codebook, & the length of
each codeword, and on the filtcr bank coeflicicnts. We
form this MSE measure in terms of the cquivalent scalar
quanlization model and find the optimum FIR filter
coefficients for each channel in the Af-band structure for
a given bil rale, given [ilter length, and given input signal
corrclation model. Specific desigh examples are worked
out for 4-tap filters in the lwo-band paraunitary case.
These 1heoretical results are confirmed by cxtensive Monte

Carlo simulation.

. Requirements for Optimized Scalar
Quantizer

For the Lloyd-Max pdf-optimized scalar quantizer, Fig.
1(a) shows the block diagram representation of the pdf-
aptimized quantizer where v is the signal to be quantized,
2 is the quantized output, and the # is the quantization
error. It can be shown that the quantization error is un-
biased and that the error is orthogonal o the quantizer

output|6)
Elov]=0. (1)

But the quantization error ¥ is corrclated with the input ¢

so Lhal the variance of the quantizalion error is
simal-ol @)

Thus the simple input-independent-additive noise moded



34

. /Lr
v v v I
a o

Fig 1. {a)Pdf-oplimized guantizer, (b)gani-plus-additive noise model.

is only an approximation {o the pdf-optimzcd quantizer.
Fig. 1(b) shows the gain-plus-additive noisc model rep-
resentation advanced by Jayant and Nollls]. For this
model we can imposc the conditions in (1), and force the
lictitious random noise error » and v 1o be uncorrelated

by choosing the gain and the cquivalent noisc vanance as

a=l——, o,=all —a@a,. (3
o,

Note thal both a, and ¢ arc new inpul signal dependent.

From rale distortion theoryl6). the quantization error

variance ¢, for the pdf-optimized quantizer is
o, =BR 2o}, (@)

where B(R) depends on the pdf of Lhe input signal 2 and
R is thc number of bits used in lhe quantizer.

. Requirements for Optimized Vector
Quantizer{VvQ)

The properties of a VQ optimized for mean squared di-
storlion error over a frame are[5)

Efiy=0  Ele‘d}=0 (s)

where 2=0(v} is the vector quantizer output, 2 =¢—9.
Eqn.(5) demonstrates that optimal quantization can focus
on zero mean random input vectors without loss ol gen-
erality and the quantized veclor is orthogonal to the
quantization error vector. The consequence of this is that
the quantizalion crror 7 is always correlated with the in-
pul ¢ if the vector guantizer is oplimum. This implies that
a model of vector quantization as the addilion of an inde-
pendent  “noise” veclor lo the npul vector cannot be

valid or al least cannot be strictly correct.

IV. Derivation of Formula for Distortion in
Optimal Vector Quantizer

The performance for an N-level %-dimensional vector
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quantizer can be mcasured by the mean square distortion,

1
D= e Ellg — Q@)% where { -] denoles the usval {; norm.

We wish to choose v, ..., vy (o minimize D. The A-dimen-
sional 2" power distorlion-rate function of an optimal

veclor quantizer in high reselution is given in [4] by
DEARY=C(k. 2)2 - C/0R | I{ PPy 2 0k, 6)

The constant C(4, 2} is a function of the vector dimen-
sion & and rcpresents how well cells can be packed in &-
dimensional space. The density function M(?) is the k-

dimensional joint pdf of the vecior process.

i. Approximate Optimized Vector Quantizer Model

According to Jayant and Noll[6], the short-time pdf of
a speech scgment can be approximaled by a Gaussian
pdl. The veclor to be quantized is assumed from consecu-
tive samples of an autoregressive stationary random sig-
nat. This model is a good model for spcech-like signals.
The mean squared quantization crror averaged over a
(rame in optimized vector quantizer coding can be com-
puted approximately using the asymplotic dislortion-rate
function for high-rate quantization derived for a Gaus-

sian random signal|3],
Dig = 2 MHdet T)/* 2 o} ()

where £, R and T" denote respectively the vector dimen-
sion, the number of bits allocated to Lhe quantizer, and
the covariance matrix of the input signal;aﬁ denoles Lhe
mean squared quanlization crror averaged over a frame
in oplitnized vector quantizer, and 1 is a correction faclor

which, for a Gaussian pdf, is
2 42
T=2nck(l +—k') s (8)

where ¢ is the quantizalion coefficient for the VQ[2]. The
correction laclor © depends on the coelficient of quantiz-
ation for ¥ and on the dimension k. There are a num-
ber of approximations based on lower or upper bounds.
The results in this paper are based on the values given by
the Varonoi lattice upper bound|2). 1t is compulationally
burdensome 1o directly estimate del . However, using

the Toeplitz distribution thcorem|6],

. ] L3 - “
lim def F'“r*=exp|3-— [ logeSue™ dw] =6, pin (9
b s T -n

where Swl(e™) is the power speciral density of the random
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Fig 2. Vector quantizer.

ey f{r@‘""""’
By(n)

P(z) =7 ez

Fig 3. A finite memory optimal predictor,

sighal {v(n)} and &} ,., the energy of the iminimum pre-
diction error. When the vector dimension % and the pre-
diclor order are reasonably large, the quantizalion error
in Eqn.(7) can be further simplificd to

Dig~ 127 s} (10)

where ol =E{|54n)|?} is the variance of the prediction
error sequence using a finite memary optimal predictor in
mean square sense{6]. A finile memory optimal predictor
is shown in Fig. 3. The weights {a;} are lincar predictor
cocfTicients and M is the prediclor order.

2. Gain-Plus- Additive Noise Madet for VQ

We show that Eqns.(1) and (3} for the pdf optimized
scalar quantizer can also he used 1o represent the optimiz-
od VQ. The distortion per frame in the LBG classification
algorithm is

= ¥

k t=n—{k--1)

i) ~0(d) )2 (1
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We show that this distortion measure equals D,f(,_ of Eqn.
(10). Assume E{leln—1)—v(n—i}?) is the same for all
in that block. Can we use Dy of Eqn{10) as this me-
asure? Is il true that #(%—1) is orthogonal to v(n—17) as
required by Eqn.(5)?, where 0(s) =v(2) —0(;)? Thus, we cal-
culate £{3G} and E{2G) () as follows. First, 500,000
samples of an AR(l), inpul signal ¢(») is concatenated
into a sequence of veclors. Then, we create a codebook
using the LBG algorithm. Second, the quantized signal o
(1) ts made from VQ encoding method. Third, the errot
signal #(») is observed. Then we calculate the following
i((:l'ﬂsiE{ﬁ(i)}—>7I Y472 8} for cach btock ; then aver-
age over all blocks. E45() 25} —>—}:— iy v 9lo) for

cach block;then average over all blocks. The resulls of
this simulation are shown in Table 1. Thercfore we can
conclude that £13()) ~0, F{ol)#()} ~ 0. So, we can

t NP
use D$Q=t2‘“/"of.=—'iz— Ity (@) —2G) 7 in the

pdf-optimized veclor guanlizer. Comparing Eqns.(}) and
(3) for the scalar quantizer with Eqn.(10) for VQ, we sce

o2 . , .| e
that if ¢} of VQ obtained from ¢;= > ¥ o1, per block
and averaged over all blocks equals o} of the scalar gu-
antizer, we can say

amt- T B2 (12)

where 7, which depends on &, the vector dimension, is
given in [2]. Also, from the theory of linear optimum prc-
diction[6], o2 = E{(2 —)*} and the optimal prediction er-

ror is represented as
al=Yi=0l. (t3)

Thus

Compensator

Fig 4. Optimum M-channel FB for simulation with AR(1) gaussian

input.
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=} —72 2Wiky? 14)

where ¥! is the “spectral flatness measure” which is the

reciprocal of the maximum prediction gain
Ye=min{owesl}/ ol =[maxixGy}]™ (15)

as predictor order becomes 0, where Gy is the prediclion
gain of the predictor. We calculate ¥ in the following
way. Consider a zecro-mean process { x(n)} wilth power spe-
clral density S:(¢/). This signal is Nllered by Fie™). Its
filtered signal spectral densily is S,{e’*) = | H{e/*}|? Sxle™)
and ¥lis

exp| L r loge Swle™) dw)
3 21[ -N

yi= [ (16)
- 'r‘ Sw(e]w) dul
2n

Eqn{14) gives us a theorclical value for a. Then use of
Eqn.(12) gives oi=(l —a)ol. This theoretical value is
comparcd with simulated quantization crror variance. In
our case, R(bil rale) is small and &= 8(vector dimension
of VQ) is also small. Therefore to improve the accuracy
of the model we introduce an empirically detecrmined cor-
rection factor § which depends on R and 4. Hence

=1 —12 NRA- 2 an
The optimized VQ mean squared error is now
L= g2 MRA=D Y2 g2 (I8
V. Model Validation

1. Codebook Design;An inpul AR(1){(p=0.95, mean=0,
var = 1.0) signal is passed through a 4-tap Binomial Qu-
adrature-Mirror-Filter({QMF)[1). This filtcred signal is used
as a training signal for codebook design using a LBG
classification algorithm with a mean squared crror cri-
terion. This algorithm converges ileratively toward a
tocally optimal codchook. We choose £ =8 for vector di-
mension, N =32, and &4 [or codebook addresses and 7=
500,000 samples for training sequences.

2. Simulations; 1}A test scquence of 500,000 samples of
AR(1) gaussian input signal is used for simulation. Since
this test sequence is generated by different seed, this se-
quence is not the same as that used in the codebook de-
sign. These test sequences are passed through a 4-tap Bi-

nomal QMF, and then arranged as a sequence of k-
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dimensional vectors. The quantized signal is obtained
using the LBG codebook. So, we can calculate £{2(s)},
E{o() 5()}, and the quantization crror £1|5(7) |7} as de-
scribed previously. Simulation resulls are shown in Table
1. 2YAnd compared with the theoretical quantization crror
calculated using gain-plus-additive noise model. Eqn.{14)}
gives us a theoretical value for a. 3)We compare £{|5(:)1?}
from simulations with o} from theoreticat scalar gain-plus-
additive noisc model Eqn.(18). Thus, we obtain . These
results are shown in Table H with the correction factor &
cqual 1o zero. An cven closer match can be found by
selecting & from the cmpirically obtained table, as shown
it Table III. From these simulations we conclude that the
optimum vector quanlizer in an M-channcl subband coder
can bc modeled by the scalar gain-plus-additive noise
scatar model.

Table T. Simulation results using AR{1) (» = 500,000 samples,
2=0.95) for LBG vector quantizer.
Bit rate | Codebook | E{8()} |E{6()}5GH |ELAMN | £19G)1%)

0.625 |N=32,k=8|-157E4 | 8Y7E4 1.9651 0.1187
075 |N=64,k=8|-225E-4 | 2.32E-3 1.9651 0.0861

Table 0. Comparision E{jv{f}|?}yim from test on VQ exper-
imenlally with 2 from equivalent scalar gain-plus-
additive noise model Lheoretically.

B)l rale (R) EXT@D [ im ol
0.625 0.1187 0.1152
0.75 0.0861 0.0969

Table M. Values of  for AR(1) {#=0.95) gaussian input. R is
the VQ rate in bit/sample, £ is the VQ dimension.

R} 02 | 035 075 LA
k=8 0.5450 0.1499 -0.0853 -0.2434
k=12 0.1323 -0.2855 -0.5371
k=16 -0.1476 -0.5780

VI. Sample Optimum Filter Bank Design

Our design problem is to find the optimal filter bank
which minimizes thc MSE for an AR(1) input signal with
correlation coefficicnt p and a 1otal bit allocation con-
straint. In [9][10), it is shown that the¢ MSE for a Perfect

Reconstruction(PR) filter bank is

MSE t ¢} +o?

M-

Y osiel. (19

L]

M-

_ 1 » 2o 1
7 = (aisi— Uu,' Gy = M S

2
Gg=

=

These terms o2, a are called the signal distortion and the
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random noise component of the MSE respectivety. And s;
is called optimal compensator, o,fl is the variance of the
fictitious random noise in the ith channel, a,, is function
of FIR filter coefficienl and o. Under perfect recon-
struction constraints, o measures lhe deviation from per-
fect reconstruction due lo the quantizer and compensator.
This decomposition ol the total MS quantization error
allows us to analyze each component error separalely.
For the paraunitary solution, 5; = I. In our example, M =

2, and a filter with 4 taps {a, b, ¢, d} is used. Here,
oy, = +2plab +be +ed) + 2p(ad), o), =2~al  (20)
ol.=all ~a)ol, ol =all—a)a). (21)

Each quantizer takes only inleger bits per channel, the
high-pass recciving at Jeast 1 bil, and the low-pass chan-
nel at most 11 bits, for two codcbooks of 2,2048 words
cach. Our optimization algorithm tests for all possible bit
combinations for the given average bit rate R bits/sam-
ple, calculates the optimal ftlter coefficients, compensators,
and MSE. It chooses the one with the minimum MSE
among them. This s implemented by using {(MSL Li-
brary{DNCONF). These anaytical resulls were confirmed
by inside training simulation using 64,000 samples of AR
(1) gaussian input.

Our calculation procedure is as follows:

(a) Fix R, %, p, codcbooks ;calculate 1.

(b) Choosc initial %(#n) using 4-tap Binomial QMF.

(c)Calculate ¥}, a. 0., ¢, from Eqns{16), (17), (20), (21)
respectively.

{d) Express MSE(Eqn.(19)} in term of 4 filter parameters;
Calculate z(n) using DNCONF algorithm. Calculate
MSE.

(e)If (MSE); < (MSE)i—\, go to step {c). If not, slop.

The analysis and simulation results for the paraunitary
FB are shown in Table VI(z), {b) for the inpul correlation
£=0.95, 0.75. From our simulation|7] we know that the
correction factor & affects variation of MSEsi within 0.5
percent and the optimal filter cocfficien(s are quite insen-
sitive to changes in d value. So, we ignore the correction
factor 8. Table Vi{a), (b) lists the oplimum integer bits
allocated to each channel Ry, R, MSE, the theoretical
cailculation(analysis) of the output MSE based on (19),
and the simulation results, MSE;;,. The corresponding
optimal filler coefficients are shown in Table V(aXb). As

seen from Table V, lhe optimal filter coefficients are quite
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insensitive 1o changes in average bit rate R although the
output MSE is highly dependent on them. We note that
ihe random nois¢ ¢ is the dominant component in the
total outpul MSE when compared with o). The simu-

lation results closely match the thearctical ones.

Tabte V. Oplimum bit allocations, theoretical and simulation re-
sults of the output MSE for lhe paraunitary FB at {a}
2 =095, (b}p=0.75.

R Ry R MSE MSE:im _
0.5 7 1 0.088010 0.087281
0.625 9 1 0.063701 0.063123
0.75 1 1 0.046211 0.045602
10 L 5 0.038583 0.038246
(a)
R Ro R MSE ..MSEsim
o 7 t 0.317696 0.292531
0.625 9 ] 0.247525 0.229685
0.75 Tt I 0.197778 0.178358
10 1 5 0.145828 0.138982
(b}

Table V. Optimum paraunitary filter coefficient al (a)p =0.95,

(byp =0.75.
R ho(0) B R ho(3)
05 0.488441 0.832218  0.226277 -0.132805

0.832219  0.226200 -0.132772
0.832219  0.226199 -0.132771

0.625 0.488484
0.75 0.4883485

1.0 0.488501 0.832216  0.226180 -0.132765
(a)
R ho(0) ho(1} ho(2) hol(3)

lﬁ_()‘.-S 0.50929806 0.81527467 0.23372086 -0.14600427
0.625 | 0.50929805 0.81527467 0.23372088 -0.14600428
0.75 0.50929806 (81527467 0.23372088 -0.14600428

1.0 0.50930305 0.81527319 0.23371601 -0.14600293

(b}

Performance comparison of the filter banks

Optimum design of biorthogonal filter banks with simi-
lar AR(1} input and bit constraints can be found on [7].
We observed that optimum paraunitary and biorthogonal
filter coefTicients are insensitive to changes in average bil
ratc R and in input correlation g although the output
MSE is highly dependent on them. The MSE in biortho-
gonal filter bank is lower than that for the paraunitary
filter bank at input correlation p =0.95;but almost equal
at input corrclation p=10.75. We next compare the opli-
mum vector guantizer with the optimum scalar quantizer

in lerm of robustness, compression and MSE.



. Robustness: For the scalar case the paraunitary filter
cocfficicnts are robust and the biorthogonal filter coef-
ficients are very sensitive to changes in input slat-
istics and bit rate. But for VQ both the paraunitary
and the biorthogonal filter cocfficients are insensitive

to changes in bil rate for fixed input signal statistics.

o

Compression and MSE: For p =095 and average bit
rate of 1 bit/sample, we found that in the scalar casc
the MSE, of 6-1ap paraunitary FB is 0.352(838
und for VQ the MSEum of 4-tup paraunitary FB is
0.038144. So we conclude that the optimum vectlor
quantizer is supenot to oplimum schalar to optimum

scalar quantizer in terms of compression and MSE.

V. Conclusions

This paper has presented an approach for modecling of
oplimum vector quantizer by a scalar nonlinear gain-puls-
addilive noise model. The validity and accuracy of this
analytical model is confirmed by comparing the calculat-
ed quantizatlion errors with actual simulation of the opli-
mum LBG vector quantizer. We have presented specific
design examples lor 4-tap paraunitary filters in {wo-band

casc using this model.
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