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1. Introduction

The history of theoretical rheology is not a
long one, but in our opinion, it is blotted with a
number of controversial propositions. Many
scientists in this field of study have hoped to
derive or find a reliable and decisive con-
stitutive equation (CE) for non-Newtonian fluid.
Since no fundamental relation is believed to
have yet been discovered, at least more than
ten popular CEs are in competition at present
without any clue to a preferable type. In in-
dependent works performed by many research-
ers over recent decades, various types of patho-
logical behavior of CEs have been observed.
This situation raises some serious doubts about
ongoing theoretical study of highly nonlinear
rheological phenomena which usually exist in
the modern processing of polymeric liquids. The
application of bad formulation of CEs to real
flow simulation makes all the efforts in vain,
and further, the unphysical results have al-
ready incurred a great deal of speculation which
in fact have nothing at all to do with the true

flow phenomenon.

For several decades, there have been many at-
tempts to derive CEs of viscoelastic materials
from the viewpoints of mechanics, mathematics
and physics. However, a deep understanding on
the nature of viscoelasticity has not yet been
reached.

In chronological order, the approaches used
by rheologists to obtain a fundamental CE or a
class of CEs for viscoelastic liquids can be rough-
ly described in several stages. The first attempt
was initiated from the viewpoint of continuum
mechanics. Pioneering work in this direction
was carried out by Oldroyd (1.2] who pos-
tulated quasilinear and nonlinear CEs of dif-
ferential and integral types to relate external ob-
servable variables such as stress tensor ¢ and
strain rate tensor e and also elucidateg im-
portant principles of invariance. Later, it was rec-
ognized that many rheological equations deriv-
ed from different approaches by different scien-
tists, are associated with the equations pro-
posed by Oldroyd. Until now, a great many
rheological equations, both of differential and in-
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tegral types have been suggested, and they are
able to describe some properties of viscoelastic lig-
uids. However, the disadvantage of this work is
that there is lack of thermodynamic analysis,
and hence important phenomena such as dy-
namic birefringence, non-isothermal flow, and
diffusion cannot be considered, and the result-
ant equations are often non-evolutionary, hav-
ing solutions that grow exponentially to infinity
with time, which is not physically plausible.

This approach was then, followed by rational
continuum mechanics approach which was de-
veloped mainly by mathematicians (3-6). They
treated the rheology simply as a branch of
mathematics and found the most general form,
which relates kinematic variables to dynamic
ones. In essence, the basic system involving the
constitutive and thermodynamic equations is
constructed using strict mathematics, with the
CEs under the restriction of causality (or de-
terminism), material objectivity and local action
principles. In this way, the properties of all
viscoelastic liquids can be described by a set of
hereditary functionals with ‘fading memory .
whose invariance and thermodynamic con-
sistency are explicit. Unfortunately, there is no
unique way to specify a deterministic form for
the memory functionals and hence predictions
are not possible. In other words, the restrictions
imposed on the constitutive functionals by ther-
modynamics and basic principles are still loose
enough to allow enormous choice of the memory
functionals. Thus, even though the class of per-
ceivable CEs has been narrowed and some rig-
orous understanding has been achieved, the
results are still too general to produce any spe-
cific model for the comparison with experimental
data.

The third approch is purely physical and ex-
plains the behavior of polymeric liquid in terms
of the intra- and inter-molecular dynamics. In
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the beginning, this approach was used to study
the behavior of dilute polymer solutions by Kar-
gin, Slonimsky, Kirkwood, Riseman, Rouse,
Zimm and so on (see for a review (7)). For a
long time, concentrated polymer solutions and
melts have also been considered as “temporary
networks of entangled chains that can move
over each other (8). Green and Tobolsky (9],
Lodge (10), and Yamamoto (11,12.13) developed
semi-phenomenological theories that extend the
theory for rubber elasticity. This idea was
enhanced by the rise of the "reptation” theories,
which are due to the work of de Gennes (7], Ed-
wards (14), and Doi and Edwards (15-17). The
creation and decay of the molecular en-
tanglements are studied by the statistical de-
scription of a polymer molecule moving along its
“tube’
rounding molecules, and then the motion of the

own axis within a created by sur~

molecule is averaged over high frequency
transverse Brownian motion. Another rep-
tational or statistical approach can be found in
the works by Giesekus (18). Curtiss et al. (19-
22], and Volkov and Pokrovsky (23,24).

In contrast to the mathematical approach,
this statistical method has generated a number
of specific outcomes, i.e. CEs, and has been gen-
erally successful for explaining viscoelastic behav-
lor of polymer liquids in linear or weakly non-
linear deformations. Even though this approach
was assumed to be based on the fundamental
principles of molecular physics, apart from their
poor description of the experimental data in
highly nonlinear region it also suffers from high
empiricism involved in formulation and some ar-
bitrary attempts to overcome mathematical dif-
ficulties. Additionally. recent mathematical an-
alyses and numerical simulations revealed
numerous examples of unphysical and unstable
behavior of those CEs. Hence, it is questionable
whether the CEs formulated by these theories
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are consistent with the Second Law of ther-
modynamics.

The fourth method of deriving CEs has been
devised by Leonov (25). It considers all non-
linear viscoelastic phenomena using quasi-
linear irreversible thermodynamics and in-
troducing a “recoverable strain tensor’ as an in-
ternal parameter. By this approach, Leonov pro-
posed a class of Maxwell-type differential CEs
under strict stability constraints which are bas-
ed mainly on thermodynamics. Later, similar ap-
proach was adopted by Dashner and Vanarsdale
{26.27) to formulate the class of CEs almost
equivalent to Leonov’s in their most general
forms.

Almost all CEs proposed in the literature
have a limited ability to describe start-up,
steady state and relaxation phenomena of po-
lymer fluids in standard simple shear and ex-
tensional flows, within a relatively narrow re-
gion of strain rates usually employed in viscome-
tric tests (28). There are, however, two frus-
trating problems in this field of study: (i) no
specific CE proposed could describe the whole
set of available experimental data with one set
of parameters specified, (ii) in real modern pro-
cessing the values of Deborah number may be
at least two orders of magnitude higher than
those in usual rheological tests and in that flow
regime almost all CEs exhibit various numerical
instabilities, the reason for which still remains
unclear.

There are a lot of speculations in the litera-
ture about relations between the instabilities in
CEs and those observed in the polymer fluid
flow (see, e.g. Ref. (29] and for the counter ex-
ample see Ref. (30]). There also exist contrary
opinions about the physical meaning of non-evo-
lutionary (Hadamard unstable) behavior of rheo-
logical equations. A major motivation to relate
the unstable CE to real flow instability may con-
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sist in the perception which has spread among
the scientists that no rheological constitutive
model is globally stable.

A few books (22,28,31-33) and a lot of papers
devoted to the rheology of polymer fluids do not
“Which CE should be
chosen to solve fluid mechanics problems of poly-

answer the question:

mer processing in the usual case of large re-
coverable deformations where nonlinear effects
of elasticity are important?” (One can find some
discussion on this topic in the recent book (34).)
Therefore, general investigation to seek not only
descriptive but also reliable CEs seems more
necessary. The principle of choosing CEs should
be based on such fundamental properties of the
equations as formulations of dissipation and
free energy, stability conditions, the bound-
edness of variables and the relation of these to
thermodynamics with subordination to the
Second Law.

To study these fundamental properties of CEs,
even in the relatively simple case of general
Maxwell-like or time-strain separable single in-
tegral models, one has to employ some frame-
work of a general formalism within which it is
feasible to establish some general constraints
imposed by the fundamental macroscopic laws
of thermodynamics. Relatively recently, there
have been suggested in the literature several
formal approaches. One is the local approach of
non-equilibrium thermodynamics by Leonov (25,
35). As mentioned before, from this idea. he
could obtain a class of Maxwell-like CEs:with
some constraints. Almost 10 years later, the
Poisson-bracket formalism has been established,
which was first introduced to viscoelasticity by
Grmela (36,37) and then extended by Beris and
Edwards (38.39). This approach extends the
Hamiltonian formalism in classical mechanics
to the case of continuum mechanics employing
functional approach and variational derivatives
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and also including the dissipative functional
into consideration. In a later paper by Leonov
(40), it was proved that both approaches result
in the same formulation, thereby giving the gen-
eral Maxwell-like model, and then its canonical
form was established. One can find another two
general formalisms developed by Kwon and
Shen (41,42), and by Jongschaap et al. (43,44).
Both are based on the irreversible thermo-
dynamics, but the first one uses the notion of
evolution of the temporary network structure
and the second employs a matrix representation
with intensive use of the time reversal principle.
Regardless of all differences in their detailed
scheme of derivation, their equivalence to
Leonov’s in the most general form is evident.

Another important objective that the rheol-
ogists should keep in mind, is in solving flow
problems that contain complicated geometry
under high deformation rate, especially the
ones in industrial processing. Complexity of
flow problems is enhanced by the fading memo-
ry of polymeric liquids that does not exist in
viscous or elastic material. Hence, the visco-
elastic polymer fluids show many unique fea-
tures such as kinetics or evolution of stress vari-
ables under steady deformation, which cannot
be examined in the other fluid systems. Owing
to this, even problems with simple geometry
which may be solved analytically for viscous
fluids, have often to be treated numerically in
the viscoelastic case.

As mentioned above, in order to solve flow prob-
lems, the first crucial decision to be made be-
forehand must be the proper choice of a CE for
viscoelastic liquids. The following principles of
choice can be suggested for the selection of CEs
for practical use:

(i) Stability. However well an unstable CE
can describe rheometric tests, it is impossible to
use it in modeling of polymer processing, since

38 A 8 A A 3+4 &, 19%

the Deborah numbers there may be at least two
order of magnitude higher and flow in a much
more complicated manner. Extrapolation of
most CEs to the region of high Deborah num-
bers and 3D flows can result in several types of
instabilities during numerical simulation. These
instabilities reflect the mathematical structure
of the CEs proposed. In most cases, they are
not related to physical instabilities observed in
the flows of polymeric fluids, or poor numerical
algorithms, but rather, to violations of some fun-
damental principles.

(ii) Descriptive ability and flexibility. It is

now well recognized that polymer melts with
similar linear viscoelastic spectra can show qual-
itatively different nonlinear behavior. For the
proper description of various flows, this requires
some functions of the kinematic variables, and
the associated nonlinear parameters in the CE,
to be specified within the stability constraints.
Once these functional forms and parameters
are specified for a particular polymer, the CE
must simultaneously describe the entire set of
available experimental data fairly accurately.

(iii) Computational economy. The proposed

CE should allow for numerical calculations in
complex flows as little computational effort as
possible. For example, despite the good de-
scriptive ability, it is rather cumbersome to
work with models in which the elastic potential
is specified in terms of the principal values of a
strain measure, and it is usually conceived that
working with CEs of differential type is pref-
erable for numerical calculation than with in-
tegral ones.

(iv) Extensibility. Real polymer processing is
confronted with a variety of complications such
as compressibility, non-isothermality, wall slip,
phase transitions and separations, chemical ef-
fects (degradation, curing), etc. In principle, the
CE of choice should be amenable to extension in
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order to accommodate these phenomena.
Among the four principles listed above, the
first two can be regarded as the most fun-
damental properties which the CEs should pos-
sess. This review article is chiefly focused on
the first principle, i.e. the stability of CEs, and
it is organized as follows. First, in section 2 we
review almost all popular viscoelastic CEs of
both differential and integral types. and then
represent them in some unified form. In section
3, all the stability results are collected, and the
most general form is presented for compressible
as well as incompressible flow system. In ad-
dition, all available results of stability analysis
are summarized in a table, where one can easily
observe in view of stability the behavior of most
of renowned CEs. Next, description of ex-
perimental data by the CE which satisfies all
stability criteria, is demonstrated for the most
thoroughly characterized poymer liquid. Finally,
conclusions follow with some comments on rec-
ommended future study of theoretical rheology.

2. Formulation of Viscoelastic
Constitutive Equations

In this section, many of popular viscoelastic
CEs are reviewed. Even though there are
numerous ways to classsify viscoelastic CEs,
here we separate them with respect to their
mathematical structure for the specific purpose
of stability analysis. They are of either dif-
ferential or integral type and are suggested
mainly in the incompressible case. At the end,
the unified form including rheological models ap-
plicable to compressible flow is presented for
the general stability analysis valid for most CEs.

2.1. Incompressible Differential
Constitutive Equations
The simplest class of differential nonlinear
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CEs for incompressible viscoelastic liquids is
the Maxwell-type. It can be written in the
“canonical’ form (40):

1

6, +¥(T.0)=0, g=—pd+ Zx(T.0)
1L, (D
dc
where ¢ = ——¢-o+@c-{(cerec) @

Here o) is a total stress tensor: p is isotropic
pressure; g is a unit tensor: ¢ which is sup-
posedly positive definite, is the symmetric
second rank ‘configuration’ or ‘elastic Finger
strain” tensor: e = (Vv+Vv))/2 and @ = (Vv-Vy)/
2 are strain rate and vorticity tensors of the
velocity field v with the notation (Vy);= dv;/dx;
in the Cartesian coordinate x; and the strain
rate tensor is subject to the incompressibility
condition, tre=0: ¥ and 7, the dimensionless
dissipative term and ‘extra stress’ tensor, are
isotropic tensor functions of the tensor [4 that
provide the CEs with a regular limit to a linear
viscoelastic case: 6 is relaxation time which
sharply depends on temperature 7. and can
also depend on the basic scalar invariants ; of
the tensor [ ¢ is a numerical parameter. The
operation E’g defined in eq. (2), which determines
is called the
‘mixed” convected time derivative of ¢ De
pending on the value of {, it takes the forms of
the upper convected, Vg(C = 1), corotational, é(C =

the evolution equation in (1),

0). and lower convected, é’(C=-1) time deriv-
atives. The evolution equation in (1) is subject
to the following initial condition:

g=§ at t=0.

(3)

Also, the relation between the tensors 7 and ¢
is usually assumed to be potential: §=_2pg~8;
(that is, the hyper-viscoelastic case where there
exists a thermodynamic potential relation),
where F'is the Helmholtz free energy, p is the
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constant density, and it has been first obtained
by Murnaghan (45) for elastic solids. In the

case of isotropic materials,

7=2p[ 9ic+ @Alic— D)+ 93159 {<p=%].(4)
]

where

I =trc, 12=%(112 —trc?), Iy=detc (5)
are basic invariants of the tensor ¢. Non-po-
tential formulations are also formally possible,
if ¢; are appropriately specified for individual
models. A special class of CEs proposed in pa-
pers (25,35) corresponds to a particular case of
potential CEs (1) with conditions

dete=1, {=1, 6)
where the tensor ¢ is treated as a recovery
strain tensor (or elastic Finger strain tensor)
which in principle can be measured in ex-
periments. In this case, the extra stress tensor

is expressed by the Finger formula:

I=2p( p1c— 9. (7

When {=1 and the potential case is under
consideration, egs.(1) and (2) give rise to the en-
ergetic relation:

aF o - -
PG D=9 D=t T2 y=y |,
(8)

Here D is the mechanical dissipation which ac-
cording to the Second Law must be positive de-
finite in any flow situation and vanishes in the
rest state.

In order to better describe the data, mul-
timodal approaches are usually employed with a
finite discrete spectrum of independent non-
linear relaxation modes:
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N N
F(T,c, - ¢ )= Y FefT,c). 1=2T(T,¢c), (9)
=1 N3O k ok Tk

and the evolution equation in (1) holds for
every mode. The above nonlinear multimodal ap-
proach can be justified only when the discrete
relaxation times in the limit of linear visco-
elasticity are well (say, in order) separated.

In the particular case of {=1, the derivation
of eq. (1) was given by Beris and Edwards (38)
who employed the Poisson-bracket formalism de-
veloped by Grmela (36,37). A brief derivation
and extensive discussion of the above equations
from the viewpoint of thermodynamics, along
with many examples, were given in Ref. (40).
Some general derivations of viscoelastic CEs
were also suggested recently by Jongschaap et
al. (44).

We now illustrate how particular viscoelastic
CEs can be obtained from the above general
equations by specifying the terms Y and T in
egs. (1), or Fin egs. (4).

i) the interpolated Maxwell model

6=const., Y= ¢-8.. (2p/AF=L-3, 1= Ge, (10)

where G is the shear modulus. The set of egs.
(1), (4) and (10) are also called the Gordon-
Schowalter (46) or the Johnson-Segalman (47)
which includes upper convected ({=1),
convected ({=-1)

lower
(€=0)

Maxwell models. These models were derived

and corotational

from some microscopic arguments introducing
nonaffine motion based on the Ericksen’s theo-
ry for anisotropic fluids or the slippage of strand
in continuum. If we add the Newtonian viscos-
ity term to the stress tensor, then egs.(4) con-
stitute a form of the Oldroyd A ({=-1) or the
Oldroyd B (£ = 1) model.
ii) the Phan Thien-Tanner model (48,49)

0=11). yc=c-8. (2p/G)F=L-3, 1= Ge. (11)
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It is derived from the Yamamoto's theory (50).
Here, the function fis assumed as a linear or ex-
ponential function of 7. It is evident that eq. (10)
is the particular case of eq. (11) when £=1.
When {=1, it is particularly called as an upper
convected Phan Thien-Tanner model.

ili) the White-Metzner model (51)

0= fl), 1. = 2ir(e?), ¢= 1,1/§= y=c-§,

(2p/G)F =1,-3, 1=Gc. (12)

It is introduced by modification of an upper con-
vected Maxwell model, and does not belong to
the class of quasilinear (linear in derivatives)
CEs.

iv) the FENE model (section 8.5.3 of Ref. (28))

6=const, {=1, y=(Kc-J),

I. -3

(2p/G)F = (I ~3)InK, 1=GKe, K ===
c—1y

(13)
where G =nkT is the elastic modulus, n is the
number of polymer chains per unit volume. k is
the Boltzmann constant, 7T is temperature, c=
(BR)/{(R), {-) denotes the average over con-
figuration space, I. =RZ=const., ], = tre, and
R is the end-to-end vector with mean-square
equilibrium length R, and finite length R, A-
bove canonical form is obtained in Ref. (40).
v) the simplest Giesekus model (18,52)

6=const., {=1, y=ac?+(1 -2a)c—(1-m)g,

0<a<l, 2p/G)F =1,-3, T=Gc, (14)
where o is a positive numerical constant. This
CE phenomenologically describes orientation
phenomena in elastic liquids.

vi) the Marrucci (53) and the Larson (54)
models

O=const, {=1, y=B(l,)}c-d),

@p/G)F =(3/OInB(I,) 0<E<1, 1=Ge/B(I)),

5
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B(Il)=1+§(11—3), (15)

where they are presented in a canonical form
(40). The Larson model is derived from mod-
ification of the Doi-Edwards reptation model us-
ing the concept, of so called “partially extending
strand convection’.

vii) the general class of the Leonov CEs [25,35)

1 1
V= Eg b, {,, Iz)l:g—?l_s} —byl, 1)

1
[cl——Z:l , @=const, {=1,
= 3=
7=2p( ¢1c— P, by>0, by>0, detc=1. (16)

Here the functions b{4, L) should have a prop-
er linear viscoelastic limit and their pos-
itiveness suffices the positive definiteness of the
dissipation. This model is introduced by using a
local equilibrium approach of irreversible ther-
modynamics. The convexity constraints

00, 00, (Pn‘Pzz>‘Plz2 (9;= a(P/a[j) amn

imposed on the general form of potential F
were also suggested (25.40). The important im-
plication of inequalities (17) and the proper use
of this class of CEs are discussed in detail in
Refs. (34,55). In the simple case of b = h=1,
with the neo-Hookean potential for F it
reduces to the simplest Leonov model which
does not include any nonlinear parameter.

2.2. Incompressible Integral Constitutive
Equations
From a wide class of viscoelastic CEs of the in-
tegral type, only the single integral ones have
been experimentally tested. In the common in-
compressible case, its general form is represent-
ed as (56):

The Korean J. of Rheology, Vol. 8, No. 3+4. 1996
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t
Q=‘P§+Z=‘P§+2PJ @t =11, 1, 1)C

—00

— ot —t},1, 1,)C]dt;. (18)

Here g is the Finger total deformation tensor,
which has the following evolution and invariant
relations for incompressible media:

(19)

ey
|<1
<
+
|<l
<
5
O
ey
Il
1o,

d¢
3
1,=tC, I,==(} -tC?), I;=detC=1, (20)

¢; and @, are generally independent functions
specified by the constitutive model and some-
times they are correlated by an elastic potential
as in the case of the K-BKZ model (57,58].
Many specific equations of this class are quite
popular and are frequently used in the rheology
of viscoelastic liquids. Experiments suggested
that one simplification of ¢, and @, so called
“time-strain separability’ (see Ref (28) p.81) is
assumed to hold (its invalidity is discussed in
the later section). It factors out one common
functional term dependent purely on time from
¢, and 9., and it can be shown as

ot —t, [1I)=m@t—t) oI 1),
dG (1 —t,)

k=1,2), m(t —t;)=
( ), m(t—t) ar,

2D

Here G(¢) is the dimensionless relaxation mod-
ulus defined in the linear viscoelasticity theory,
which is a smooth function of time with com-
mon properties of

G(@)>0, G'(t)<0, G"()>0,G(0) < o

and G (o0 )=0. (22)

Including the condition of time-strain separa-

bility, we can rewrite eq.(18) as
t
o=pb+2p _[ m(t—t)[ ¢, 1)C—

fugt A 8 A A 3+4 &, 1996

@I, 1)C M dt,. (23)

Among many specifications in the type of eq.(18)
or (23), some popular forms are enumerated
here.

i) the CE by Wagner and coworkers (the
Wagner model I) (59)

(2p/G) ¢,=f -exp(-n NI =3)+(1-f)-
exp(=n,VI =3),
9,=0, I =B-1,+(1-P)l; (24)

where G is the modulus, and f, m, n, and B are
positive fitting parameters. It is proposed based
on some empirical reasons.

ii) the CE by Wagner and Demarmels (the
Wagner model II) (60}

2p/G) 9,=(1=P)-h 1)),
(20/G) 9,=B-h 1)),
k1) =[1+aNU,-3)I,=-3)]"", (25)

where a and b are positive fitting parameters.
iii) the model by Papanastasiou et al. (61]

@p/G) ¢,=a-[a-3+pl,+(1-P,]7, ¢,=0,(26)

where o and P are numerical parameters.
iv) the model by Luo and Tanner [62)

(2p/G) 1= [a=3+pl+(1- P,
(20/G) 9,= ©- 9. (27

It is proposed as a modification of eq.(26) in or-
der to include a nonzero value of the second nor-
mal stress difference in simple shear flow. Here
the additional parameter x is positive and it re-
lates the first and second normal stresses as N/
N; =—%/(1-x) in simple shear flow.

v) the class of the K-BKZ CEs (57,58]

- OF - OoF

‘P1=?1, 9’2=E, (28)

or in the case of the time-strain separability, i.e.



eq.(23):

oF JF

= = —_— 9
a, 27, (29)

?1
This is derived on the basis of thermodynamics.
In egs.(28), the potential 7 denotes the thermo-
dynamic free energy F' with relaxation effects
taken into account. Note that the Wagner
models I (24) and II (25), the model by Pa-
panastasiou et al. (26) and its modification (27)
do not satisfy this potential relation (29) except
for some trivial cases.

Several specifications of the elastic potential
F in eq.(29) are proposed in the literature.
vi) the Oldroyd-Lodge model (63-65)

2p/G) ¢,=1, ¢,=0, (30

where it results from the neo-Hookean potential
2p/@F= (1,-3)/2.
vii) the Larson and Monroe potential (66)

Qp/G)F = —23‘;1:1[1 +2a —3)]
I=Q-pBI,+v1+281,-1,

a=k0+k2-tan‘{—kl—(lzﬂ}. (3D
1+{,-1,)
Here ko, ki, k; and B are numerical fitting con-
stants. It is proposed in order to describe not
only simple shear and simple elongational but
also biaxial elongational data.

viii) the Doi-Edwards model (15-17)

Q’=“P§+2PJ m(t —t,)-Qt,1)dt; and
(2p/G)Q =S<uu>. (32)

Here u is the unit end-to-end vector of a
strand during deformation, and { - ) denotes av-
erage over configuration space. It assumes rep-
tating motion of polymer chains inside a tube
created by surrounding polymer chains. Even
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though it has the form of single integral type, it
contains a functional of statistical averaging in-
side this integral.

ix) the Currie potential (67)

(2p/G)F = % -Ia[Q —1)/7],
J =1,+2(I,+13/4)»2 (33)

It is derived as a close approximation to the rep-
tation model shown in egs. (32).
%) a potential by Yen and McIntire (68)

2p1~7 =

G1 t GZ
. —— |-In[1+ oI -3)]+—=-
2ot exp[ elj nl1-+ail, -3+ 722

G
exp(—aL)~ln[1+ﬁ(12—3)]+ﬁ-
2 3

exp(—é}(]l—@. (34)
It is a linear combination of simple potential
forms, which introduces a partially time-strain
separable version of the general potential
presented by Zapas (69). Here G{s are moduli,
8/s are relaxation times, o and P are nonlinear
parameters and the relationship between the po-
tential 7 and CE is shown in egs. (28).

Before concluding this section, several po-
tential forms suggested in the rubber elasticity
theory are mentioned below, since they can be
applied in principle for the K-BKZ class of in-
tegral CEs as well as for the hyper-viscoelastic
CEs of differential type. It seems conventional
that they are in many cases presented as a func-
tion of principal values rather than invariants
of the total Finger deformation tensor.

xi) a potential by Ogden (70)

20F =2—2Go';‘ CER+CE2+Ca=3)  (35)

n

where @, is a numerical parameter which can
be negative or positive, G, is a constant with a
dimension of modulus and C; is a principal
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value of the Finger tensor. It is noticeable that
it becomes identical to the Mooney potential (71]
if it contains only two specific terms cor-
responding to 0, = 2 and @, = 2.

xii) a potential by Valanis and Landel (72)

2pF=i|:A -\/C_i(ln\[CT,-—l)+a-ln\fCT:|, (36)
i=1
where A and o are parameters. It is based on
the concept that the elastic potential for iso—
tropic hyperelastic materials can be represented
as a sum of three separate functions of each
principal values of the Finger tensor.
xiil) a BST potential (73]

2pF = %IE +B-If, Iy =%(C'1"2 +C32+C57), (37)

where A, n, B and m are all parameters.

For the time-strain separable viscoelastic CEs
with potential F (the K-BKZ class). the basic
functionals such as the stored free energy W,
the extra stress tensor T and the dissipation D
are of the form (74):

W=pf m@-1,)F (I Iyt.t))dey,,

r oF
t=2p[ m(t-1)C- SeUnlst i),

D =ti(z- e)——— of —(t—tl)

F (I, I5t,t)dt,. (38)

As to the non-potential viscoelastic (or nonhy-
per-viscoealstic) CEs such as the Wagner equa-
tions (24,25), and the models by Papanastasiou
et. al (26) and by Luo and Tanner (27), their
When
working on very rapid deformations, it is pos-—

formulation is completely unphysical.
sible to create a perpetual motion machine from
a hypothetical material subordinate to this type
of rheology (75). Nevertheless, we summarize
the results on this type of CEs too, considering

it as mathematical abstraction for the super-
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ficial curve fitting of data

2.3. Unified form of Compressible and
Incompressible Constitutive Equations

We now introduce a unified set of notations
for both differential and single integral types of
viscoelastic CEs, which is in principle applicable
to the compressible case. For the differential
models, we employ only upper convected time
derivatives in the evolution equations due to
the following reason. It has been proven several
times (40,76-78) that the evolution equations
with mixed time derivatives are Hadamard un-
stable (the definition is given in the next sec-
tion) except for the cases of upper and lower
convected derivatives, and it is also well-known
that the lower convected time derivative can be
equivalently rewritten in the form of upper con-
vected one (e.g. see Ref. (40]).

Introducing a modified pressure term defined as

)4 for differential CEs

p +£° ol it

p'= (39)

for integral CEs

and using the Cayley-Hamilton identity and the
invariance of rheological variables (say, the ex-
tra stress g) under arbitrary addition of iso-
tropic terms in the case of incompressibility, we
(4)

represent both classes of CEs in egs. (1).
and (18), (19) as follows:

S6F

O=-p'd+T T=2pc

2pc-

E for differential CEs

(40)

J j‘ l;fdt . for non-separable integral CEs

ﬂmm(‘ —t)Edt, for separable integral CEs

where 8/3¢ is in general the partial Fréchet deriv-
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ative with respect to C and £= 2p[q>1£+ (Pz(llg‘
&)+ s8] with the definition for ¢; in egs. (4)
and (29) while for E ¢; should be replaced by 9;
in eq.(28). In this notation, ¢ becomes the total
Finger strain tensor (' in the case of integral
CEs. and thus for the integral and the Leonov
CEs it is directly related to volume change, i.e.
L=detc=(po/p)* with po=p(t=0 or t=t).
Here we can formally include the CEs for com-
pressible materials, if we assign p' =0 in egs.
(40) since the isotropic pressure is no more in-
determinate in the compressible system. Even
though the set (40) is written for hyper-visco-
elastic equations, the nonhyper-viscoelatic for-
mulation (@;#¢; with a definition for ¢;in egs.
(17)) can also be included by properly specifying
;or 9.

At this point, we can find some logical im-
perfection for differential CEs. In the case of
general differential hyper-viscoelastic CEs other
than the Leonov class, the formulation of com-
pressibility (otherwise incompressibility) in the
constitutive model is not known because of the
lack of the relation between the density and the
tensor ¢. In other words, if we choose the po-
tential F=Fp. L. L, ) without the relation J,
= (py/p)’. Murnaghan’s relation in eqgs.(40) is
no longer valid. Hence, strictly speaking, hyper-
viscoelastic differential CEs except for the Leo-
nov class lose their physical meaning, and some
other substitute for Murnaghan’s relation
should be sought, which has not yet been discov-
ered.

The (elastic or total) strain tensor c¢ is the
solution of the following evolution probler;li

¢ |i=0=6 for differential models

|- =C i =8 wO=0

\4
b+ =0,

ey

for integral models,

157

+v-Ve-W - (41)

—c- Vv,

e
e

Here y is the dissipative term which vanishes
for int—égral CEs. and from now on we consider
only upper convected time derivatives even for
differential models.

Before concluding this section, we want to
modify above unified form especially for the com-
pressible formulation. In mechanics of com-
pressible materials, one usually employs the fol-
lowing transformations to separate volumetric
and shear components of deformations:

7 43
A p A A p A
S I = [?0] I I,= (?0] L,
2
A AN A A2 A2 A1
Ly=|—|, Iy=trc, =, L=(I; —trc )/2=trc ,

I,=detc=1 (42)
In the hyper-viscoelastic case represented in
egs. (40), the potential /' and hence the stress
tensor £ are now dependent upon a different
set of variables such that

F(T,1,,1,,13)=HFT,I,1,p),
A AN A A -1 A
E=2p(p/2) 9,8+ 9183~ 0C ~1.8/3)]
(43)

where ©,=37/9l,, 0=03F/d], and ¢,=d[/dp of
which the relationships with ¢/s are derived in
Ref. (79). Here the nonhyper-viscoelastic case
can again be included.

In this type of formulation, the evolution re-
lation (41) is rewritten as

v

01c+(2/3) (V- v)e[ + W& p) =0, (44)

v
where ¢ is the upper convected time derivative
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of g and i{(é p) = (po/p)ml(g) introduces dis-
sipation to differential CEs.

3. Mathematical Stability of Viscoelastic
Constitutive Equations

3.1. Background

In numerical simulation of non-Newtonian
flows, degradation of the numerical solution or
lack of convergence of computational schemes
has been frequently observed for large or even
modest values of Deborah numbers. It is
thought that the main cause of this instability
is the bad choice of a CE for numerical ap-
plications (see, e.g. p.314 of Ref. (80)).

The mathematical instability of rheological
CEs can be distinguished into two types: (i)
Hadamard and (ii) dissipative. Hadamard in-
stability, which shows the unboundedly in-
creasing amplitude of short waves as the
wavelength tends to zero, is associated with the
nonlinear rapid response of CEs, hence it de-
pends on the type of differential operator in the
evolution equation for differential models and
the configuration tensor-stress relation, i.e. the
elastic potential in the hyper-viscoelastic case.
However, the dissipative instability which is in-
herent only in viscoelastic equations, by de-
finition, results from the dissipative terms of
CEs in the case of differential type. For integral
equations, the dissipative terms are hidden in-
side the hereditary integral. and thus the type
of instability for integral CEs originated from
the characteristics same with those for dis-
sipative unstable differential CEs, will also be
called dissipative.

The most distinct is Hadamard instability,
which is mathematically understood as the ill-
posedness of the Cauchy problem. The Ha-
damard instability results in catastrophic disas-
ter in numerical calculations: the finer the mesh

g Al 8 A A 3+4 %, 199

is, the worse the results degrade (81]). The first
example of this type is illustrated by Hadamard
for the initial value problem of the elliptic
(Laplace) partial differential equation. In the
case of more complex equations, this ill-pos-
edness occurs when the time-dependent partial
differential equation changes its type from hy-
perbolicity to ellipticity. Similar instability may
be also observed in a steady problem, if the dif-
ferential equation manifests the change of type
from ellipticity to hyperbolicity. We can ex-
amine some phenomena in nature associated
with this change of type such as transonic flows
of compressible media and phase transitions
like melting or phase separation. However, the
change of type in transonic flows should be dis-
tinguished from that in Hadamard unstable
CEs. The transonic flow occurs when the veloc-
ity exceeds the characteristic wave velocity,
but the change of type by unstable CEs is due
to the stress level. Many scientists in the field
of viscoelastic rheology have also made at-
tempts to associate this type of unstable behav-
ior in CEs to certain physical instabilities of
the polymer fluid flow like melt fracture (82,83)].
On the other hand, Dupret and Marchal (76)
and Leonov (40)

evolutionary models for viscoelastic fluids are

pointed out that non-

no good and should be discarded from any furth-
er consideration as in other fields of physics and
mechanics. Illustrating one example of flow
with singular geometries. involved in most prac-
tical applications (76), where a solution is hard-
ly expected to exist for unstable equations, they
conclude that only models which never lose evo-
lution should be used.

In viscoelastic fluid mechanics, the Hadamard
stability analysis has been first carried out by
Rutkevich (84,85) in the case of the Maxwell
model, and to some extent by Godunov (86).
Some significant results have been obtained rel-
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atively recently by Dupret and Marchal (76)
and Joseph and coworkers (see the monograph
(81) by Joseph).

Rutkevich considered the Maxwell model (84,
87]), and proved that the upper convected, the
lower convected and the corotational Maxwell
models with a Newtonian viscosity term are al-
ways evolutionary. He also obtained the sta-
bility conditions for all three equations. Later, it
is shown that those stability criteria for the upp-
er and the lower convected Maxwell models are
always satisfied (77].

In addition to the results by Rutkevich, for
the interpolated Maxwell model which involves
the mixed time derivative in the evolution
equation, Joseph and coworkers {77,78]), Dupret
and Marchal (76)
dependently proved that the Hadamard in-

and Leonov (40) in-

stability always occurs except for the marginal
cases of upper and lower convected time deri-
vatives. The ill-posedness of the Johnson-Se-
galman or Gordon-Schowalter (76] and the ori-
ginal Phan Thien-Tanner (78] CEs is subject to
this cause of instability.

Using the general method of characteristic
cone orientation, Dupret and Marchal (76]) show-
ed that the White-Metzner model exhibits loss
of evolution, which has been again justified by
Verdier and Joseph (88) who employed a per-
turbation method in their analysis. It is found
that the dependence of the relaxation time on
the second invariant of the strain rate tensor
For this
model, Verdier and Joseph (88) also noticed one

causes nonevolutionary behavior.

type of dissipative instability similar to the one
of an upper convected Maxwell model in elon-
gational flow: the solution goes to infinity
whenever the extensional strain rate exceeds
half of the reciprocal relaxation time.

As to the mathematical procedure of stability

analysis, a general method of characteristics (76)
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is sometimes complicated and cumbersome.
However, in almost every interesting cases, it
can be simplified by the introduction of the
method called “frozen coefficient” (see, e.g. (81))
when we consider only extremely short and
high frequency wave disturbances propagating
with a finite speed. Those cases are related to
all the CEs of the quasilinear differential type
as well as the time-strain separable single in-
tegral CEs. Then, the linear stability analysis of
the problem is studied locally without con-
sidering boundary conditions. Although by fol-
lowing Kreiss" examples (89) this simplified lo-
cal stability condition is neither necessary nor
sufficient for the overall stability in the general
nonlinear differential case, in the case of quasil-
inear differential and time-strain separable sin-
stability
analysis with the method of frozen coefficients.

gle integral equations the local
can be employed without loss of generality (90).
We can see that a number of papers on the
evolution of viscoelastic CEs have been pub-
lished, but the stability analysis has been con-
fined to only simple flow situations for specific
differential models.

tioned results,

Besides the above-men-
one can see various limited
results on the Hadamard stability and on the
change of type (91~97).

The stability analysis of Hadamard type has
not been developed to produce any concrete
result on the evolution character for single in-
tegral CEs of both potential and non-potential
types until recently. The most general attempt
in this direction has been made by Joseph and
coworkers (77,81) by formulating rate equations
from single integral models. This complete gen-
erality is, however, difficult to utilize because
the general conditions for stability can be
presented only in the form of a hereditary func-
tional, which needs to be analyzed for any par-
ticular, seemingly simple flow.
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There have been some contradictory ar-
guments about the meaning of nonevolutionary
behavior related to thermodynamics. On the
basis of local equilibrium postulate, Rutkevich
(98] proposed that evolution criteria for the
Maxwell fluid are identical to the Second Law of
thermodynamics, i.e. the Clausius-Duhem in-
equality. From this, he concluded the loss of evo-
lution is a consequence of incorrect assignment
of the internal energy or the free energy. On the
contrary, Dupret and Marchal (76]) showed the
possibility that the Second Law may be preserv—
ed even in the nonevolutionary case. This il-
lustrates the difference between the Second
Law and the evolution requirements. For single
integral CEs, Renardy suggested and proved a
sufficient condition for the Hadamard stability
imposed on the potential in the K-BKZ model
(99). This condition may suggest a clue to the
implication of evolution criteria associated with
thermodynamics.

In the theory of nonlinear elasticity, the
method of stability analysis has been well es-
tablished and the implications of stability are
understood in great detail. Among many con-
ditions suggested, the simplest stability con—
straint known as the Baker-Ericksen inequality
(100) means that the greater principal stress oc-
curs always in the direction of the greater prin-
cipal stretch. The thermodynamic stability con-
dition for hyperelastic solids called the GCN™*
condition (see the section 52 in (3)) is identical
to the convexity of the thermodynamic potential
with respect to the Hencky strain measure,
which has also been known as a condition for
the strong monotonicity of stress with respect to
strain. The Hadamard stability of field e-
quations in theoretical elasticity, corresponds to
the strong ellipticity, the condition of which im-
plies the stability requirement in dynamic si-
tuation, whereas the ordinary ellipticity pro-
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duces the constraint in static relaxed state (101).

The GCN™ condition has a close relationship
with the strong ellipticity condition. The lack of
symmetry of a second rank tensor in the
representation of stability conditions causes
more restrictive conditions for the strong el-
lipticity than for the GCN* condition (3). There-
fore, such inequalities as the Baker-Ericksen
and the GCN™ may be regarded as necessary
conditions for the strong ellipticity or for the Ha-
damard stability.

For isotropic compressible hyperelastic solids,
the necessary and sufficient conditons of or-
dinary and strong ellipticity have been obtained
in the case of finite plane equilibrium de-
formations by Knowles and Sternberg (102]). In
the general 3-D case, the necessary and suf-
ficient condition of strong ellipticity for e-
quations governing an isotropic compressible
material has also been established in the paper
(103). Both ordinary and strong ellipticity con-
ditions are formulated in a form of algebraic in-
equalities by Zee and Sternberg (101] in the e-
quilibrium theory of isotropic incompressible hy-
Additionally, they de-
monstrated a close relationship between the or-

perelastic solids.
dinary and strong ellipticity. such that the Bak-
er-Ericksen inequality combined with the or-
dinary ellipticity constraint is equivalent to the
strong ellipticity condition.

In the viscoelastic case, general results on glo-
bal Hadamard stability, i.e. stability for any
type of flow and for any Deborah number, has
been recently proposed for both general classes
of quasilinear Maxwell-like CEs (40) and time-
strain separable single integral CEs (104). Lat-
er, it has been proved that the algebraic criteria
for Hadamard stability are in reality the neces-
sary and sufficient conditions for ther-
modynamic stability, that is, the GCN™ or the
convexity conditions for thermodynamic poten-
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tial in the hyperelastic case, which impose weak-
er constraints on CEs than the criteria for Ha-
damard stability (105). The global Hadamard
stability condition has been first obtained for 2-
dimensional flow system in Ref. [74] for the
separable single integral CEs. Then the com-
plete 3-dimensional conditions for the global Ha-
damard stability in the incompressible case are
derived in the paper (105) by introducing the
constitutive formalism in Refs. [40,104) and fol-
lowing the algebraic procedure in the paper
(101), and many of popular CEs are analyzed
by the application of obtained criteria. In the
compressible flow of viscoelastic fluid, the global
Hadamard stability is also considered for the for-
malism including both differential and separ-
able single integral CEs (79].

Results regarding the dissipative instability of
CEs have been very rare. 1-D instability of the
Giesekus model within a certain range of a
parameter is reported for the plane Couette (106)
and the Poiseuille flows (107). Those papers
show that the instability occurs when the num-
erical parameter is greater than 1/2 and shear
rate exceeds a certain critical value. This type
of dissipative instability is related to the de-
creasing branch of the steady shear flow curve.
Similar results can be seen for the Larson as
well as the Giesekus CE in Refs. (108,109],
where another type of "blow-up instability of
the Larson,
Giesekus models under step shear stress exce-
eding some bounded stress maximum (or
supremum) is demonstrated. As for the Larson
model which is later proved Hadamard unstable
[105], the breakage of the sample specimen is
also calculated in simple elongational flow und-
er long wave disturbance (108).

In Ref. [40], one can also find two theorems
proven for the Maxwell-type CEs, one of which
llustrates positive definiteness of the con-

et FAloll Bt

the simplest Leonov and the
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figuration tensor in some restricted situation,
which was first proven by Hulsen (110) in a dif-
ferent way. The positive definiteness of the con-
figuration tensor is required for stability, since
its violation immediately yields the Hadamard
instability. Another theorem gives a useful suf-
ficient condition for the boundedness of vari-
ables in the Maxwell-type CEs, the satisfaction
of which guarantees the dissipative stability
also for a limited flow history. On the other
hand, the necessary and sufficient condition for
the boundedness of the solution for the integral
CEs is established in the paper (74). However,
both the theorems assume a predefined strain
history, hence whenever mixed stress-strain his-
tory is given, they cannot be applied to dis-
sipative stability analysis. It should be also men-
tioned that this type of instability can occur

even if the dissipation is positive definite.

3.2. Hadamard Stability Criteria for Viscoe-

lastic Constitutive Equations

In this section. following the procedure of pap-
ers (79,105), we outline the mathematical scheme
of obtaining the global Hadamard stability con-
ditions for quasilinear differential and time-
strain separable single integral CEs in in-
compressible or compressible isothermal flow of
viscoelastic liquid.

The total set of equations in this stability
problem consists of viscoelastic CEs (40) with
(39) and (41) or with (39). (43) and (44), and
the following momentum and mass balance
equations:

dp
4=V~ —_ - =
Py =Vo +pVv =0. (45)

Here for simplicity. we neglect the force exerted
on the mass of the body. Then assuming that
the set has a solution { ¢ v. p’. p} which sa-

tisfles some proper initial and boundary con-
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ditions, we impose on the solution extremely
short and high frequency, infinitesimal waves of
disturbances

{8c, &, &p”, 8p} = &{c, v, p, p} - expli (k -x — ax)/&],
(46)

where € is a small amplitude parameter (]€[<{{1)
and also implies the short wavelength and high
frequency of the waves, ¢, v. p and p are
{(generally complex) amplitudes of the cor-
responding disturbances, k£ is a wave vector,
and o is the frequency. For incompressible sys—
tem, the density is constant, and thus its fluc-
tuation vanishes, i.e. p = 0.

Considering the local linear stability analysis,
we can easily find the following “dispersion re-
lation”, that is, the dependence of the frequency

® on the wave vector and the parameters of the

basic flow:
2 | BijmVik;vmkn for differential models
Lowy' =
Ty =4, o
2 | _m(e~1)By,dtyvik;vmkn

for integral models. (47)

Here Q = -k - v is the frequency of oscillations

with Doppler’s shift on the basic velocity field v

taken into account, and the fourth rank tensor

Bijmn is defined in the principal axes of ¢ with

principal values ¢; as )

By = 81, 8,Gj + 8, 8un Ly,

G, =[p1+9el;—c;—c))]-¢;

Lj=[ 9,42 ¢1+2 o, ~¢) U —¢;)
+2 ol —¢;)+2 oyl —c)cc;
P +20505+20501—¢) ¢

+2¢3 —c;)c; +29 156, +2¢34¢; 15 (no sum),

(no sum),

(no sum),

x=0, vk, =0 in the case of incompressibility

x=1, vik; #0 48

in the case of compressibility.

In this analysis, the difference between stability
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problems of incompressible and compressible
systems consists in the possibility of long-
For the
compressible system, the speed of the long-

itudinal wave propagation. in-
itudinal wave approaches infinity, whereas the
speed of the transverse wave is finite. Hence,
perturbation of basic solutions by the long-
itudinal wave is not considered in this stability
problem, and the wave vector is always orthog-
onal to the vector disturbing the velocity field
(vik;=0). However, for the compressible ma-
terial, the speeds of both waves have finite
Thus for stability,

finitesimal amplitude of distrubing waves of

values. the initially in-
either type (or a mixed type) should remain
small at subsequent moments.

Now from eq. (46) with the definition of €,
one can see that Q*%%/2)0 is required for sta-
bility. Therefore, the necessary and sufficient
condition for global Hadamard stability reduces
to

Vik;Vmbkn > 0.

(49)

ijmn

lg)z‘"f:B.
2

On the other hand, the convexity of potential or
the GCN" condition can be represented as

By B Bon >0, (50)
where

. OF

Bimn = Sy~ 1™ S (c"’ ac,, J (5D

hj is the Hencky strain measure with A= (1/2)x
In¢. and the inequality (50) should be satisfied
for thermodynamic stability with respect to an
arbitrary symmetric tensor B; (for in-
compressible system trB=0). In the potential
case (hyper-viscoelastic _case), the identity Bjmn
= Jg’,j,,,,, holds. When comparing inequalities (49)
and (50), one can notice that due to the sym-
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metry of the tensor B; the condition (50) im-
poses weaker stability constraints than the in-
equality (49), that is, the Hadamard stability
conditions are stronger than those of GCN™.
Employing the algebraic procedure applied in
hyperelasticity (101,103), we can finally obtain
the necessary and sufficient condition for the
global Hadamard stability as the following:
Incompressible System

(1) ;>0 or @+ @,¢; >0,
(i) &+2u; >0,

2
(i) [ Z o + §j+2;1]] > &~ 24

G #j=k), (52)
where

=0 21+ PcNeje (G #j #k),
2,
G=Ui—c)( 91+ @) +2|IF =2y =P~ —=

[ 2u+( et Pa)e+ 9267 (53)

Compressible System

In the compressible case, we present the con-
ditions written only in separated variables ¢
and p defined in eqs.(42). N
terms of the original configuration tensor ¢ can
be found in Ref. [79]. )

(i) >0 and >0 (i=1,273),
(i) wi = g Ne;o +\pn > | B |, @) k),
(iii) (0’1 V2223+ﬁ191J ht (0’2 V2123+ﬂ262J\/-y;

+ (og \/2122+ﬁ39192j Vi +[20w,+B,6)

W+ B8 (w3 +B:6,0)]2+Vn 115> 0
for all four choices of 8,, 8,==*1. (54)

Representation in

Here

A A A
O = P +¢; P,

54 24~ a2 24 1aa 2
B = [;11—3(% +Ck):| ¢+ (312"?Cjck)q)2

3

il
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+pa,+2[ i) | @ { ] (o] i 0),

1 14

Y= (911'301}?1 [T
A A T
+pg,+ 2[0445’] |:d)mn:| I:arﬁ‘)] .

P11 (P12t 92)/2 (@1 P1)/2

[@”] = (@1 P21)/2 Py (9’2p+ ‘sz)/2

(¢lp+ @pl)/ 2 (@Zp + (sz)/ 2 g’pp

——(11 ¢ )c]

[a]= [ e || 1 {1/3 e—(y3 -4, );ﬂ]
9,; =09,/9; ,,=0¢;/0p, ¢,; =99,/0l;
P5p=09,/9p (i,j=1,2). (55)

Hence, the criteria (52) and (54) are obtained
which
should be imposed on CEs to prevent un-

in the form of algebraic inequalities,

physical instabilities in the whole range of De-
borah numbers. Regarding the biquadratic form
(49) for the compressible system. a little alge-
braic manipulation yields
1
?QVZ_Z :}mnvxkjv"'k" +[Yi] [mij] D)j]T > Ov (56)

where

2my; =m;+m;, [y;] =[;1k1 ;2/‘2 ;3"3].

m; (g;l 4A );’1 {19—412""(11 C)Clila’z
*P‘}p"‘;] (%Z‘%gij;n"‘;{%;z‘%(}l
—éi)gi]a’zz"'%pz;pp [3;1;2_2}1(}1 gi)
2.‘ - %2225}((;12"' %21)*’[’(%11 "2'.' ) (;’m"' a)pl)

+p[%12~(11—gi)gi](qazp+q)p2) (no sum) (57)
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The fourth rank tensor é,-,-mn is the same as Bjmn
for the incompressible system in egs. (48) but
represented by &. I, §; and §; instead of ¢, I, ¢;
and ©;, respectively. If we consider at this point
one particular system perturbed only by shear
waves (vk;=0), then it can readily be seen that
positiveness of the biquadratic form Z?,,»,,,,,i/}-kj?mk,,
in eq.(28) is the condition for the global Ha-
damard stability. since m;y;y;= 0 under the dis-
turbance of these equivolumetric waves. Hence,
the above consideration simply indicates that
the necessary and sufficient condition (52) with
eqs.(53) becomes the necessary one for the Ha-
damard stability of compressible systems when
it is rewritten in terms of E, A (?),- and (B,, instead
of ¢, I, ¢;and 9;

Before the necessary and sufficient condition
of global Hadamard stability being established
for viscoelastic fluid, there have been suggested
sufficient conditions for the incompressible sys-
tem as the following, which are of importance
especially in formulating new CEs:

D Leonov's condition (17): the thermodynamic
potential ' for the Leonov class of viscoelastic
models is a monotonically increasing convex
function of invariants / and I, (25.40).

@ Renardy's condition: the thermodynamic po-
tential F for the K-BKZ class of CEs is a mono-
tonically increasing convex function of in-
variants v7, and I, (99).

Even though Renardy’s condition is proved
only for the K-BKZ class, it is also sufficient for
Hadamard stability when it is applied to dif-
ferential Maxwell-like CEs with upper con-
vected time derivatives (105). Since the con-
dition by Leonov is stronger than Renardy’s, it
also guarantees the global Hadamard stability
for the K-BKZ class. As to the compressible
CEs, one sufficient condition for the global sta-
bility is suggested (79), but its complexity still
prevents it from being easily utilized as a cri-
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terion for formulating new stable CEs.

3.3. Dissipative Stability Criteria for Visco-
elastic Constitutive Equations
As mentioned before, there exists another
type of instability related to the specifications of
dissipative terms in viscoelastic CEs. This in-
stability may happen due to a poor formulation
of the dissipative term Y (or ¥ when =1 in
(1) even for the Hadamard stable CEs

where the dissipation is also positive definite.

egs.

For single integral CEs the instability results
from fading memory effects in eq. (18). Al-
though the global criteria for dissipative sta-
bility of viscoelastic CEs are far from complete
(if it is in general possible), we discuss in this
section two specific criteria that have already
been proven. In the case of compressible flow,
no theorem on disspative stability is known yet,
but the following theorems are presumably
valid also for the compressible CEs, when they
are represented and applied to CEs in separat-
ed variables such as ¢.

Criterion [ of Dissipative Stability

Theorem 1.1: The case of differential CEs (40)
Consider the set of upper convected Maxwell-
like CEs (40) and (41) with the positive dis-
sipation D =I(T. L. L, L) defined in eqgs. (8).
Let the free energy F' be a non-decreasing

smooth function of three invariants . If for any
positive number E. the asymptotic inequality

D>E- |zl llcli - (nt;u E@z)w) (58)

holds, then in any regular flow, the con-
figuration tensor ¢ and the stress tensor T are
limited.

Theorem 1.2 The case of single integral CEs
(74}

In any regualr flow, the functionals of free en-
ergy and dissipation in eqgs. (38) are bounded if
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and only if the thermodynamically or Hadamard
stable potential function F(H,. H, H) ex-
pressed in terms of principal Hencky strains H;
increases more slowly than exponentially.

In theorem 1.2, principal values of Hencky
strain tensor and Finger tensor for the total de-

formation are related as

H,=(1/2)nC; or H=(1/2)InC, uH =0. (59)

Detailed proofs and definitions of terminology
are given in the cited papers or in Ref.(105].
While Theorem 1.1 has been proved for dif-
ferential CEs as a sufficient condition close to
the necessary one, Theorem 1.2 is a necessary
and sufficient condition for integral CEs.
Establishing above thecrems was initially
motivated by the fact that the upper convected
Maxwell model, globally Hadamard stable, dis-
plays the unbounded growth of stress in simple
extension when the elongation rate exceeds the
half of the reciprocal relaxation time. In conse-
quence, the theorems result in the following: (i)
the upper convected Maxwell model which
violates Criterion 1 (40), and (i) the K-BKZ
class with a potential I represented as an in-
creasing rational polynomial function of basic in-
variants (74]), are dissipative unstable. There-
fore, the Mooney and the neo-Hookean po-
tentials as well as the potentials for the K-BKZ
class of CEs which are subordinate to
Renardy’s sufficient evolution criterion also
violate Criterion I of dissipative stability (74].
CEs,

guarantee even the positive definiteness of the

Regarding differential one cannot
tensor ¢, the violation of which immediately
causes Hadamard instability. In some limited si-
tuation, one theorem on the positive de-
finiteness has been proved by Hulsen [110) and
in Ref. (40]). It states that for any given piece-
wise smooth strain history with the initial con-

dition ¢ =3, the principal values of tensor ¢ are
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positive. Hence, the Criterion I of dissipative
stability as well as the theorem on positive de-
finiteness of ¢ in differential CEs assumes the
pre-defined strain history (or the regular flow).
In the usual case of complex flow where not a
strain history but a mixture of strain and stress
histories are given, Criterion I cannot be ap-
plied.

Since the satisfaction of Criterion I alone can-
not prevent the severe dissipative instability,
an additional criterion for dissipative stability is
introduced.

Criterion II of Dissipative Stability (105)

For the stability of Maxwell-like and time-
strain separable single integral CEs, it is neces-

sary that both the steady flow curves in simple
shear and in simple elongation have to be mono-
tonically and unboundedly increasing with
respect to the strain rate.

In Refs. (108,109). it is shown that the vio-
lation of Criterion II incurs “blow-up” instability
or even negative values of diagonal components
of ¢ in simple shear. Here we show some ex-
amples of this type of instability for the simpest
Leonov, the simplest Giesekus and the Larson
models.

For those three CEs, the steady flow curves
in simple shear (dimensionless shear stress &
vs. dimensionless shear rate I') are shown in
Figs. 1 and 2. Evidently, they violate Criterion
II of dissipative stability. When we apply step
stress (therefore the stress history is prescribed)
greater than the maximum (or the supremum)
in the flow curves, we can observe severe blow-
up instability illustrated in Figs. 3-5, where
rheological variables go to infinity in a finite
time (109).

These examples clearly demonstrate the vali-
dity of Criteria I and II. Even though all three
models satisfy Criterion 1 (40), under specified
stress history they show dissipative instability

The Korean J. of Rheology, Vol. 8. No. 3+4. 199
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Fig. 1. Dimensionless shear stress of the Giesekus model
or the Leonov model (a=1/2) plotted versus di-
mensionless shear rate in steady simple shear flow.
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Fig. 2. Dimensionless shear stress of the Larson model

plotted versus dimensionless shear rate in steady
simple shear flow.

since they violate Criterion II of dissipative sta-
bility. In the paper (105), it is assumed that the
subordination to the combined criterion ‘T+IT
is presumably sufficient for the dissipative sta-
bility of both differential Maxwell-like and time-
strain separable single integral CEs, at least in
simple flows.

3.4. Application Results and Discussion

fwsh 2 8 ¥ A 3+4 3, 199
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Fig. 3. Blow-up instability of various rheological vari-
ables exhibited by the Giesekus model in creep
shear flow (0= 0.3, - dimensionless time).

The problem of global Hadamard stability for
quasilinear differential and time-strain separ-
able single integral models is completely resolv-
ed recently in both cases of incompressible and
compressible isothermal flows of viscoelastic
fluid. Concerning dissipative stability, even aft-
er the study performed in recent years, the glo-
bal analysis is far from being completed. Howev-
er, two distinct patterns of dissipative in-
stability have been revealed.

In fact. it has been very controversial on how
to distinguish the unstable behaviors caused by
poor modeling of CEs and the observed physical
instabilities which CEs should also describe. So
far there have been a lot of attempts in the
literature to apply unstable CEs to real flow in-
stabilities like melt fracture. For example, the



Fig. 4. Blow-up instability of various rheological variables
exhibited by the L.eonov model in creep shear flow.

hypothesis of short memory is employed for the
explanation of these physical phenomena (111],
but it turned out that this instability is related
to the change of type and furthermore some in-
congistency appeared due to the use of different
equations for the basic flow (82]. Another ap-
proach can be found in the work by Dunwoody
and Joseph (112), where they obtained stability
criteria of shear flows by applying long wave per-
turbations to CEs.

It is generally agreed that the melt fracture is
a phenomenon related to stick-slip process of po-
lymeric fluids along the wall. Therefore, this
problem has nothing to do with the unstable
behavior of CEs, and it should be treated as an
adhesion problem of liquid on the wall under in-
tensive flow. In author’s opinion (105), Ha-
damard and dissipative instabilities of visco-
elastic CEs are the genetic flaws incurred by a
bad formulation of various terms in CEs, and
the occurrence of either Hadamard instability or/
and ill-posedness in 1-D situations without
such physical reasons as phase transition, etc.,
is a distinct sign of inappropriateness in the
CEs. Hence we can treat the instabilities de-
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Fig. 5. Blow-up instability of dimensionless shear rate
exhibited by the Larson model in creep shear
flow.

monstrated in these works as being associated
not with the real instabilities observed in flows
of polymer melts, but rather with the improper
modeling of terms in CEs. Any CE with any
type of instability described herein, should be
discarded from any further application, however
well it describes viscometric data and however
deep physical meaning it may contain. An at-
tempt to apply the unstable behavior of
equations to real flow instability would cause in-
consistency with other sets of experimental
data, and this kind of contradiction has been al-
ready demonstrated recently in the paper (113].

In numerical simulation of complex flows with
unstable CEs, when the flow rate becomes high
enough, occurrence of various types of un-
physical instabilities is inevitable. Even in the
range of the moderate Deborah number, the ex-
istence of singular points in flow geometry such
as the corner singularity in die entrance region,
is sufficient to spoil the whole numerical pro-
cedure.

All the results of the stability analyses found

The Korean J. of Rheology, Vol. 8, No. 3+4, 1996
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in various studies for popular viscoelastic CEs,
are summarized in Table 1. Details of ap-
plications of stability criteria can be seen in the
cited papers. Table 1 also shows the Hadamard
instability of the Doi-Edwards model which is
not proved anywhere. However, if we are aware
of the behavior of the Doi-Edwards model that
in the elastic limit the shear stress exhibits de-
creasing branch with respect to step shear
strain, the proof of instability becomes trivial
(the instability of the decreasing branch in the
case of time strain separability is explained in

d

Table 1. Stability of viscoelastic constitutive equations

=
s

Ref. (114)). It is noteworthy that such CEs
derived from molecular approaches as the Lar-
son and the Currie models including the Doi-Ed-
wards CE, exhibits the most unstable behavior.
Surprisingly enough, none of the time-strain
separable single integral models are evo-
lutionary (it is also found that simultaneous sa-
tisfaction of the Hadamard stability criterion
and Criterion I of dissipative stability is almost
impossible for time-strain separable single in-
tegral CEs). (114)

analyzed extensively the time-strain separ-

Recently, Simhambhatla

Model (Eq. #) Type of CE Type of Instability Reference

Upper convected Maxwell (10) ({=1) Quasilinear differential Dissipative unstable (Criterion I) e.g. 40

Interpolated Maxwell (Johnson- Quasilinear differential Hadamard unstable 40, 76, 77,18

Segalman, Gordon-Schowalter) (10)

General Phan Thien-Tanner (11) Quasilinear differential Hadamard unstable 40, 76, 77, 18

Upper convected Phan Thien-Tanner Quasilinear differential Hadamard stable: dissipative 105

(11) (€=1) stability depends on dissipative
terms

White-Metzner (12) Nonlinear differential Hadamard and dissipative unstable 76, 88
(Criterion I)

FENE (13) Quasilinear differential Globally Hadamard and dissipative 105
stable

Giesekus (14) Quasilinear differential Dissipative unstable (Criterion II) 108

Simplest Leonov (16) (b= b,=1) Quasilinear differential Dissipatiife unstable (Criterion II) 108

Leonov CE (16) under specified Quasilinear differential Globally Hadamard and dissipative 105

stability constraints (17) stable

Larson differential (15) Quasilinear differential Hadamard and dissipative unstable 105, 108

(Criterion 1)

Wagner I (24) Separable single integral ~ Hadamard unstable 105

Wagner II (25) Separable single integral ~ Hadamard unstable 105

Papanastasiou (26) Separable single integral ~ Hadamard unstable 74

Luo-Tanner (27) Separable single integral ~ Hadamard unstable 105

Lodge (30) Separable K-BKZ Dissipative unstable (Criterion I) 74

K-BKZ class under Renardy’s Separable K-BKZ Dissipative unstable (Criterion I) 4

condition

Larson-Monroe potential (31) Separable K-BKZ Hadamard and dissipative unstable 74, 105
(Criterion II)

Currie potential (33) Separable K-BKZ Hadamard and dissipative unstable 105
(Criterion II)

Yen-Mclntire (34) Quasi-separable K-BKZ Dissipative unstable (Criterion I) 74

Doi-Edwards (32) separable integral Hadamard unstable 128
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ability concept for viscoelastic CEs. He verified
the invalidity of time-strain separability, in
more detail, the Hadamard stable CEs of the
separable type cannot properly describe the ex-
perimental data of stress relaxation after step-
wise loading. Interestingly. such violation of
separability in short time scale has already
been observed experimentally by Einaga et al
(115). Astonishingly, many CEs become Ha-
damard unstable even in viscometric flow region.

For CEs of the differential type, only 3 stable
specifications exist. These are the FENE, the
upper convected Phan Thien-Tanner models,
and the Leonov class of CEs under convexity
constraint (17) for elastic potential. However,
besides thermodynamic inconsistency
(invalidity of Murnaghan’s relation explained in
the previous section), both the FENE and the
upper convected Phan Thien-Tanner models
predict zero value for the second normal stress
difference in simple shear flow, which con-
tradicts the experimental evidence for polymer
melts and concentrated polymer solutions.
Hence. it may be expecting too much for the
FENE and the upper convected Phan Thien-
Tanner models to reasonably describe whole set
of experimental data. The difficulty of des-
cribing the experimental data has been reported
in quite a few publications and it is briefly dis-
cussed in the following section.

In addition, for any successful numerical
modeling of high Deborah numer flows of po-
lymer melts, compliance with the stability cri-
teria must be taken very seriously. The im-
portance of stability may be implied by the fact
that (within author’s knowledge) the high De-
borah number flow of abrupt contraction in the
die entrance region has been satisfactorily simu-
lated only with the Leonov model until now
(116].

It should be noted that all the necessary and

+

3
i
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sufficient conditions described for single mode
CEs become only sufficient for the multi-modal
approach if they are applied to each Maxwellian
mode. Even though the necessity is not proven,
it is thought that the threshold of instability
would be only delayed to some higher Deborah
number region in multi-modal approach if the
single mode case is unstable.

Table 1 shows that the combined stability cri-
teria impose very tough constraints on visco-
elastic CEs (the Hadamard stability constraints
for the compressible CEs are even stronger than
for the incompressible CEs). Therefore, the seri-
ous question arises whether there exists a CE
or a class of CEs which can properly describe all
the available rheometric data for concentrated
polymer solutions and melts, when satisfying
all the stability constraints. Recently, the paper
(55) has demonstrated that such a class does ex-
ist, and it is discussed in the following.

4. Rheological Modeling of Viscoelastic
Polymer Liquids

Although the descriptive ability is another cru-
cial feature of viscoelastic CEs, its review will
not be presented in detail. The flow effects
predicted by constitutive models can be found, e.
g. in the monographs (22,28,31-34]). A good re-
view on this field of study may be in the mono-
graph by Larson (28], which also contains brief
derivations of CEs and some comparisons of the
descriptions of various models with ex-
perimental data.

In the field of rheology of viscoelastic liquids,
there has been a prevailing perception that
none of CEs may properly describe the whole
set of experimental data obtained for polymer
melts or solutions. It was right in some sense
until recent years. Indeed, almost none of rheo-

logical models could describe consistently the
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whole set of data with one set of parameters
(see chapter 7 in Ref. (28]). As to the single in-
tegral CEs, the same difficulty was again re-
cently reported [(117,118). However, all pes-
simistic precautions on rheological modeling not-
withstanding, Leonov and Simhambhatla (55]
recently verified the existence of desirable CEs.
With the Leonov class of CEs proposed in 1976
(25) which satisfies all stability criteria, they de-
monstrated excellent correspondence of model
descriptions with all experimental data a-
vailable for such extensively characterized po-
lymer melts as Melt I (LDPE), HDPE, po-
lystyrene and polyisobutylene. In this review,
we examine those results.

In their study of model description [55), in-
stead of the simplest Leonov model which uses
only the parameters of the discretized linear
viscoelastic spectrum, they employed a highly
nonlinear specification of the general Leonov
class of CEs. This choice eliminates some of the
often discussed deficiencies of the simplest
model. Of all polymer liquids, LDPE Melt I is
the most extensively characterized in rheo-
logical testing. Differnt batches of the same
resin referred to as [TUPAC A and ITUPAC X
have virtually indistinguishable rheological pro-
perties. This polymer with its long side
branches, has also proven to be one of the most
difficult for viscoelastic modeling. Hence, here
we present only the comparison between the
description of the Leonov CE and the ex-
perimental data on Melt I.

For LDPE Melt 1 of which material spec-
ification is listed in Table 2, they specified the
following functional form for the dissipative

Table 2. Molecular Weight and molecular weight dis-
tribution of LDPE Melt 1

M, M,/M,  Reference

LDPE Melt I 460000 22 129
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term in egs. (16) and the neo-Hookean po-
tential:

by, I)=byI, 1) ={/T)", 2p/G)F =I,-3,
(60)

m>0.

The parameter m was chosen to be 1.4 for prop-
erly describing the extensional stress growth
data. The parameters of the linear viscoelastic
spectra are shown in Table 3, which have been
independently obtained by Laun (119).

All model descriptions are reproduced in Figs.
6-16, where experimental data have been ob-
tained independently by Laun (119,120), Wagn-
er and Laun (121), Giacomin et al (122),
Meissner (123], Laun and Munstedt (124], and
Khan et al. (125). Even though the short ex-
planation for the experiments is given in figure

Table 3. Linear viscoelastic spectra of LDPE Melt I (119)
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Fig. 6. Steady state shear viscosity and first normal
stress coefficient. Various symbols correspond to
experiments performed at different temperatures.
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Fig. 8. Transient stress growth at a shear rate of 1. Vari-
ous symbols correspond to experiments perform-
ed at different temperatures.

captions, for detailed testing scheme and model
calculations one would rather refer to the ori-
ginal paper (55]). If we keep in mind possible ex-
perimental errors, it can be asserted that the
model descriptions of the whole set of ex-
perimental data are excellent. If we compare
this result with the work by Larson and Monroe
(66), the good desciptive ability of the Leonov
CEs becomes evident. While in their study Lar-
son and Monroe described only part of the ex-
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Fig. 10. Shear strain and primary normal stress dif-
ference in creep tests at a constant shear stress.
Various symbols correspond to experiments per-
formed at different temperatures.

perimental data for Melt [ with 4 nonlinear
parameters shown in egs. (31) (even without
considering the heavy instability inherent in
their potential form), the speciﬁcaﬁon (60) of
the Leonov class could successfully reproduce
the whole set of available data with only one
nonlinear parameter m. The work by Simham-
bhatla and Leonov [55) is the only publication
known to the current author, which contains
good experimental comparison of CEs inside the
global stability range.

Furthermore, one can observe another good
description of the Leonov CEs in the paper {126],
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where highly nonlinear data for orthogonal su-
perposition of two shear flows (obtained by Sim-
mons [(127)) are satisfactorily matched by the
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simplest Leonov model involving a retardation

term.
5.- Conclusions

In this paper. recent studies on the mathemat-
ical stability of viscoelastic CEs are reviewd. By
definition, there are two types of instabilities
such as the Hadamard and the dissipative in-
stabilities. The instability considered here is not
at all related to the real physical unstable
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phenomena exhibited by viscoelastic fluid espe-
cially in high Deborah number flows, and
should be avoided in formulating new CEs and
in modeling complex flow effects.

The problem of the global Hadamard stability
has been completely resolved for two such broad
classes of viscoelastic CEs as quasilinear dif-
ferential and factorable single integral models
which are the only ones in practical use at the
present time. The distinction between ther-
modynamic and Hadamard stabilities is also cla-
rified. The necessary and sufficient condition ob—
tained in an algebraic form, imposes constraints
on parameters or functional terms in CEs for
the Hadamard stability in any type of flow and
in any Deborah number. Regarding the dis-
sipative stability, two necessary conditions have
been found. Even though the problem of the glo-
bal dissipative stability stil remains unsolved,
it seems that the satisfaction of those two con-
ditions is sufficient for the dissipative stability
of the viscoelastic CEs.

It is shown that the combined stability cri-
teria imposes very tough constraints on visco-
elastic CEs. As a result, no separable single in-
tegral CE is found to be stable, and only three
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specifications of quasilinear differential CEs are
proven to be globally evolutionary. Recently,
only the Leonov class of CEs is shown to be
able to consistently describe all the ex-
perimental data when simultaneously satisfying
every stability condition.

Based on the fundamental study reviewed in
this article, it is discovered that the general Leo-
nov class of CEs is the only stable one with the
required predictive ability. In author’s opinion,
it is not at all accidental, since the Leonov class
has been derived from the theory with a firm
basis on thermodynamics. In addition, it may
be the only type of CEs which possess the strict
stability constraints imposed from the for-
mulation. However, there still remains one de-
fect in constitutive modeling derived on the
basis of continuum mechanics: the arbitrariness
in the specification of parameters and func-
tional terms in CEs. For its remedy, many scien-
tists have been trying to formulate viscoelastic
CEs from the concept of molecualar (or sta-
tistical) physics. However, in spite of their lim-
ited success in the linear viscoelastic limit, CEs
derived from the molecular physics exhibit the
most unstable behavior. Hence, we may con-
clude that our present understanding of rheol-
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ogy in view of molecular physics is in the prim-
itive stage.

Apart from very few exceptions, solutions for
the problems of viscoelastic fluid mechanics are
not available when the Deborah number ex-
ceeds a certain value, usually equal to the order
of one. However, the Leonov class of CEs seems
promising for numerical simulation of complex
flows at higher Deborah numbers. With such
stable CEs,
phenomena exhibited under strong flow regimes

the study of highly nonlinear

and in a complex flow geometry is desirable as a
next step of development in this field. Fur-
thermore, such complicated flow phenomena as
phase separation, polymerization, curing and de-
gradation during isothermal or non-isothermal
flows are the challenging problems to move to-
wards, which may be readily solved if we utilize
good thermodynamic consisitency present in the
Leonov class.
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