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ABSTRACT

The generalized linear impulsive correction problem is applied to make a linear pro-
gramming problem for optimizing trajectory of an orbiting spacecraft. Numerical
application for the stationkeeping maneuver problem of geostationary satellite shows
that this problem can efficiently find the optimal solution of the stationkeeping param-
eters, such as velocity changes, and the points of impulse by using the revised simplex
method.

1. INTRODUCTION

Since the simplex method was introducd in 1947 by George B. Dantig, linear programming,
which is an advanced mathematical field, have radically progressed in the field of the management
science and operation research (OR). The simplex method, which is the first procedure of solving
linear programming, has a simple algorithm in conception.

The simplex method of nonlinear optimization needs no initial estimate for the solution and can
be made to converge to a global minimum although it requires a high computational price. Branham
(1989) applied the simplex method to nonlinear optimization to determine the Pluto’s mass and
produce a satisfactory result.

Even though there are many advantages in linear programming, the optimal control theory has
provided means by which the necessary conditions for optimal orbit control function can be derived.
However, each method leads to subsidiary computational requirements that have proved troublesome
in practice. Waespy (1970) described how the relatively efficient computational technics of linear
programming can be used to obtain near-minimum fuel solutions and applied to the terminal guidance
of an orbiting spacecraft. In his paper typical trajectories based on linearized equation of motions
were calculated.

In 1939 L. V. Kantorovich, mathematician and economist of the U.S.S.R., introduced and solved
the linear programming of the organization and planning of production (Gass 1994). A numerical
algorithm of the generalized linear programming was first described by Lidov (1971). Bakhshiyan
et al. (1980) developed this idea.

48



GEOSTATIONARY STATIONKEEPING 49

In this paper the generalized linear impulsive correction was applied to make a linear program-
ming problem for an orbiting spacecraft. In order to show the effectiveness of the problem, for
example, the stationkeeping maneuver problem of geostationary satellite was used. The optimal
solution of the stationkeeping parameters, such as velocity changes, the points of impulses were
obtained by using the revised simplex method.

2. GENERALIZED LINEAR IMPULSIVE CORRECTION

Let us consider an ideal correction for which errors of starting data are absent. In particular the
execution errors of correction impulses are zero.

We regard each impulse vector j(j = 1,...n;n - total number of impulses) as an element of
Euclidean space RK of dimension k; and the vector ﬁ which has to be controlled, as an element of
Euclidean space R¥. Equation (1) shows the vector «; may depend lineary on the vector (Bakhshiyan
et al. 1980).

f: f(la,u':,-) = 18+Bju'3- ¢y

where I is starting vector, and B; is a known &; x k matrix which defines the linear mapping from
R*: onto R*.
In special B; may be expressed as in (2)
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du duji
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When |, Iy are given, to find optimal impulse vector i;, the generalized linear impulsive correction
problem may be stated as following:

n
Minimize Z))u‘}“ 3)
j=1
n bad el -
subject to Y Byuiy =I—lp=15
j=1
We can express u; in magnitude x; and it’s direction ;.
uj = 57 Q)
Where (|v;|| = 1. Therefore ||u;|l = z;||v;|| = z; and problem (3) is reduced to the following

generalized linear programming problem,

to find Zj, ¥;
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n
Minimize Z z; ©)
Jj=1

n
subject to Zszj'?j =b
i=1
Zj 2 0
The simplex method can be applied to problem (5) and optimality condition is as follows:
min T
Aj = |yl =1 (1~ n Byy;) (6)
where 77 is Lagrangian multiplier. If A; > 0 then the current point is considered as optimal. In
the opposite case the new basis for which the minimum in (6) is attained is introduced and until
optimality condition is specified, the procedure is repeated.

3. STATEMENT OF THE PROBLEM

Consider the problem of optimal correction of the satellite orbital parameters, in special deter-
mining the configuration of an orbit. The corrected orbital parameters are as follows:

vq 1 apogee altitude
vp : perigee altitude
w : argument of perigee

Also, the impulsive correction is performed by thrusters in the following directions (Figure 1) :

Vz : velocity of tangential direction
Vy 1 velocity of radial direction

However the geostationary station keeping maneuver is usually performed in the tangentiat
direction. Hence radial direction is not considered, namely V = Vy and k; =1 Vj=1,..,n.

The time when the correction should be made is determined by the eccentric anomaly E. At
the correction moment E; the spacecraft receives impulses AV; where j is the number of correction
( = 1,...,n) and n is total number of impulses.

The required variations of orbital parameters Ar,, Ar,, Aw are small. Hence the correction
impulses are small too. Consequently it is possible to write with a sufficient accuracy the following
linear dependence.

Al = " B(E;)AV; (7
7=1

where Al = (A'Ya, A'}'pv Aw)’
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Figure 1. Typical geostationary orbit.
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The partial derivatives of each orbital parameters are as follows (Nazirov et al. 1992).
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By using (5), (6) and (7), we can formulate the linear programming in order to find optimal AV;.

n
Minimize ZIAVJI

ji=1
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n
subject to Al = B(E;)AV; 8
j=1

4. NUMERICAL EXAMPLE

We will apply the problem (8) to geostationary station keeping maneuver and verify the effec-
tiveness of the optimal solutions, which are obtained by using simplex method. Usually in EWSK
(East-West Station Keeping) the drift rate change (AA) is constantly maintained.

The required velocity changes (AV) are calculated from equation (9) as drift rate change (Agrawal
1986).

AV = 2.83A) m/s 9)

The variation of velocity changes as drift rate change are showed in Table 1. On the other
hand, the velocity change achived from the optimal solutions of linear programming problem (8),
are described in Table 2.

Table 1. Typical longitude station keeping.

Longitude Station Keeping
Longitude Deadband(deg) AV (m/s) A)(deg/day)

3+ 0.1 0.15 0.053
+0.2 0.21 0.074
+ 0.5 0.33 0.117
+1.0 0.46 0.163
+ 2.0 0.66 0.233
+ 3.0 0.80 0.283

Table 2. Velocity change calculated by this paper.
AX(deg/day) Av;(km) Ay (km) Aw*(deg) AV (m/s)

0.053 8.09 0.131 5.08 0.148
0.074 11.3 0.164 6.37 0.210
0.117 18.0 0.214 8.32 0.332
0.163 25.2 0.250 9.76 0.463
0.233 36.1 0.288 11.2 0.662
0.283 43.9 0.307 12.0 0.805

* The orbital parameters used in calculating Ava, Avp, Aw are as follows:
a = 42.163km, e = 0.00025,w = 80°
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Figure 2. Comparison the optimal solution with the analytical solution.

Figure 2 shows the satisfactory coincidence between the analytical results and the linear pro-
gramming solutions.

5. CONCLUSION

In spite of the simplicity in conception of algorithm and the powerful convergence of linear
programming, its application to the orbit control program is comparatively fewer. In order to apply
these advantages to the orbit control problem, the problem of generalized linear impulsive correction
was presented for the numerical optimization of an optimal flight trajectory, which is essentially
non-linear problem.
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Table 3. Velocity change at each impulsive point.

AVapogee (m/s) AVperigee (m/s)
0.147 0.00239
0.207 0.00299
0.328 0.00389
0.459 0.00456
0.657 0.00525
0.799 0.00559

To find the optimal solutions, the revised simplex method was applied and the computer program,
using FORTRAN 77, was developed. The geostationary station keeping maneuver as a numerical
example for the generalized linear impulsive correction illustrated that an optimal impulsive correc-
tion vector could be calculated by the present method. Furthermore correction points and number of
impulses could be determined as Table 3.

As the results of comparison with the existing analytical solutions, they coincided. Hence we
showed that the generalized impulsive correction problem is an efficient tool for achieving the optimal
solution of the orbit control problem, which has depended on the existing optimal control theory.

Finally, the velocity change may have an upper bound as fuel state of the satellite so that the
generalized impulsive correction problem should be modified to the upper bound problem.

Although in this paper one velocity direction was considered, three dimensional velocity direction
should be incorporated into the present optimization process to complete the generalized impulsive
correction problem.
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