A Study on the Synthesis and Functional Properties of the Thermotropic Polyurethanes

Thermotropic Polyurethanes의 合成과 機能性에 관한 硏究

  • Lee, Jong Back (Institute of Industrial Science, Univ. of Tokyo, Roppongi, Minato-ku, Tokyo, Japan) ;
  • Song, Jin Cherl (Dept. of Textile Eng., College of Eng. Pusan National Univ., Pusan, Korea) ;
  • Choi, Dae Woong (Dept. of Chemical Eng., College of Eng. Dongeui Univ., Pusan, Korea)
  • Published : 1996.04.01

Abstract

Thermotropic liquid-crystalline polyurethanes were synthesized by the polyaddition reaction of such para-substiuted diisocyanate monomer as 1,4-phenylene diisocyanate(1,4-PDI) and 2,5-tolylene diisocyanate(2,5-TDI), with 4,4'-bis($\omega$-hydroxyalkoxy)biphenyls(BPm: $HOC_{m}OC_{6}H_{4}C_{6}H_{4}OC_{m}H_{2m}OH$; m is the carbon number of the hydroxyalkoxy group). These polyurethanes have mesogenic biphenyl units in the main chain. Properties of polymers were studied by differential scanning calorimetry, wide-angle X-ray scattering, thermogravimetic analysis, polarizing microscopy, and infraed spectroscopy. DSC thermograms for these polymers exhibited two endothermic peaks corresponding to phase transitions of melting and isotropization. Mesomorphic behavior of the polyurethanes were also observed under the polarizing microscope. For example, polyurethane 2,5-YDI/BP5 with [$\theta$]=0.44 prepared from 2,5-TDI and BP5 exhibited a liquid crystalline phase from 194 to 205$^{\circ}C$. Infrared spectrum study indicated that the hydrogen bonding between urethane linkages affected the mesomorphism. The thermostabilities of polyurethanes 2,5-TDI/BP5 and 1,4-PDI/BP5 were measured at a heating rate of 1$0^{\circ}C$/min in air. The temperatures of 5% weight loss for 2,5-TDI/BP5 and 1,4-PDI/BP5 were 297 and 334$^{\circ}C$, respectively.

Keywords

References

  1. In Specialty Polymers Pearson, R. G.;Dyson, R. W.(ed.)
  2. Liquid Crystalline Order in Polymers A.Blumstin
  3. Molecular Structure and Properties of Liquid Crystals G. W. Gray
  4. Makrmol. Chem v.182 K. Iimura;N. Koide;H. Tanabe;M. Takeda
  5. Kobunshi Robunshu v.43 M. Tanaka;T. Nakaya
  6. Macromolecules v.22 P. J. Stenhouse;E. M. Valles;S. W. Kantor;W. J. MacKnight
  7. Macromolecules v.22 S. K. Pollack;D. Y. Shen;S. L. Hsu;Q. Wang;H. D.Stidham
  8. Makromol. Chem v.190 H. R. Kricheldorf;J. Awe
  9. J. Polym. Sci. : Polym. Chem. Ed. v.28 M. Ando;T. Uryu
  10. Polym. J. v.21 T. Uryu;J. C. Song
  11. Polym. J. v.21 T. Uryu;J. C. Song;T. Kato
  12. Makromol. Chem. Phys. v.196 W. Mormann;M. Brahm
  13. Makromol. Chem. Macromol. Symp. v.69 W. J. MacKnight;F. Papadimitrakopoulos
  14. Macromolecules v.23 G. Smyth;E. M. Valles;S. K. Pollack;J. Grebowicz;P. J. Stenhouse;S. L. Hsu;W. J. MacKnight
  15. Macromolecules v.25 S. K. Pollack;G. Smyth;F. Papadimitrakopoulos;P. J. Stenhouse;S. L. Hsu;W. J. MacKnight
  16. Macromolecules v.25 F. Papadimitrakopoulos;S. L. Hsu;W. J. MacKnight
  17. Macromolecules v.27 W. Tange;R. J. Farris;W. J. MacKnight
  18. Macromolecules v.25 F. Papadimirakopoulos;E. Sawa;W. J. MacKnight
  19. Macromolecules v.26 J. B. Lee;T. Kato;T. Yoshkda;T. Uryu
  20. Macromolecules v.28 J. B. Lee;T. Kato;T. Iimura;T. Uryu
  21. Polym, J. v.27 J. B. Lee;T. Kato;T. Uryu
  22. 한국염색가공학회지 v.7 J. B. Lee;J. C. Song
  23. 한국염색가공학회지 v.8 J. B. Lee;J. C. Song;D. W. Choi