Moisture Transpiration and Water Proofing Finish of PET Fabric Using Glow Discharge(II)- Water Repellency of PET Fabric Treated with $C_2F_6$ Plasma -

글로우방전을 이용한 PET 직물의 투습방수가공(II) - $C_2F_6$ 플라즈마 처리시의 발수성 -

  • 김태년 (우석대학교 의상학과) ;
  • 육종일 (국방과학연구소, 혜전전문대학 섬유과, 충남대학교 섬유공학과)
  • Published : 1996.08.01

Abstract

PET fabric was treated by R.F. plasma of $C_2F_6$ , and PET film was also treated by the same method. The treated samples were washed with boiling water in soxhlet apparatus for 4 hrs, dried at room temperature for 48 hrs, and heat treated at 15$0^{\circ}C$ for 10 mins. In order to investigate the most optimum treatment condition, plasma gas pressure and treatment time were systematically changed. The water repellent property of plasma treated samples were evaluated by contact angle meter and water droplet rolling-off angle meter. And the change of surface chemical characteristics were analyzed by ESCA. The results obtained are as follows: 1) Before washing the PET film contact angle appeared high near two electrodes, however, after washing and heat treatment were done, the more effective setting position of substrate was the center area of the reactor. 2) The contact angle of $C_2F_6$ treated samples was higher than 150$^{\circ}$irrespective of plasma gas pressure, and under low pressure and short time treatment condition $C_2F_6$ plasma treatment was more effective than $CF_4$ plasma treatment. 3) There was a good water repellency when $C_2F_6$ gas pressure is 0.05~0.06 torr and duration of glow discharge treatment is 60~90 seconds. 4) According to ESCA analysis, $-CF_2-$ , and $-CF_3$ bonds were more readily formed by the $C_2F_6$ plasma rather than by the $CF_4$ plasma of $C_2F_6$ treated sample, and the $-CF_2-$ bond appeared to be dominant with short time treatment condition.

Keywords

References

  1. Jpn. Res. Assn. Text. End-Uses. v.36 no.1 N. Yosida;K. Kanemaru;H. Tuzimura
  2. Chem. Express v.6 T. Goto;J. Chen;T. Wakida
  3. Dyeing Ind. v.30 Y. One
  4. J. Chem. Soc. Japan v.1985 no.6 Y. Ikada;T. Matsunaga;M. Suzuki
  5. Text. Res. J. v.39 P. O. Sherman;S. Smith;B. Johannessen
  6. J. Soc. Dyers Colour v.109 T. Wakida;H. Li;Y. Sato;H. Kawamura;M. Ueda;H. Mizushima;S. Takekoshi
  7. Sen-i Kagaku v.1988 no.12 H. Shibata
  8. Solid State Tech v.1978 no.22 D. L. Flamm
  9. Solid State Tech. v.1979 no.4 D. L. Flamm
  10. Plasma Chem. Plasma Process. v.1 D. L. Flamm
  11. Plasma Chem. Plasma Process v.6 K. R. Ryan;I. C. Plumb
  12. J. Polym. Sci. Part A: Polym. Chem. v.30 J. Bretagne;F, Epaillard;A. Ricard
  13. J. Korean Soc. Dyers. Finishers v.5 no.4 S. Y. Mo;G. L. Kim;T. N. Kim;T. I. Chun
  14. J. Korean Soc. Dyers. Finishers v.6 no.3 S. Y. Mo;Y. U. Lee;T. N. Kim;T. I. Chun
  15. J. Appl. Polym. Sci. v.32 Y. Haque;B. D. Ratner
  16. Chem. Eng. Sci. v.49 no.5 M. Masi;G. Besana;L. Canzi;S. Carra
  17. Chem. Eng. Sci. v.49 no.10 G. L. Huppert;H. H. Sawin;R. A. Broen
  18. J. Polym. Sci.: Part A: Polym. Chem. v.31 P. E. Fabienne;P. Barbara;J. C. Brosse
  19. Photochemistry, Macromolecules v.18 G. A. Corbin;R. E. Cohen;R. F. Baddour
  20. Sen-i Gakkaishi v.47 L. R. Zhang;Z. Takahara;K. Nishimiya;T. Haraguchi;T. Kajiyama
  21. J. Appl. Polym. Sci. v.50 J. Wang;D. Feng;H. Wang;M. Rembold;F. Thommen
  22. J. Appl. Polym. Sci.: Appl. Polym. Symp. v.42 Y. Momose;T. Takada;S. Okazaki
  23. J. Polym. Sci. Polym. Chem. Ed. v.23 M. Strobel;S. Corn;C. S. Lyons;G. A. Korba
  24. J. Polym. Sci., Part A : Polym. Chem. v.25 M. Strobel;S. Corn;C. S. Lyons;G. A. Korba
  25. J. Appl. Polym. Sci. v.51 M. J. Okeefe;J. M. Rigsbee
  26. J. Appl. Polym. Sci. v.39 T. Yagi;A. E. Pavlath;A. G. Pitiman
  27. J. Polym. Sci., Polym. Chem. Ed. v.16 D. T. Clark;A. Dilks
  28. J. Appl. Polym. Sci. v.26 J. R. Hollahan;B. B. Stafford