폴리에스테르 고속 방사의 공정 해석 -수치 모사에 의한 접근-

Analysis of the High Speed Spinning Process of Poly (ethylene terephthalate)- A Simulation Approach -

  • 김경우 (서울대학교 섬유고분자공학과) ;
  • 김상용 (서울대학교 섬유고분자공학과)
  • 발행 : 1996.07.01

초록

The high speed spinning process of poly(ethylene terephthalate) was analyzed by 1-dimensional and 2-dimensional numerical simulations. The radius and the surface temperature of the fiber along the spin-line were calculated from the 1-dimensional numerical simulation. With the boundary conditions determined from the above, the temperature and the structure formation across the fiber radius were investigated from the 2-dimensional finite element method(FEM). To predict the neck-like deformation of the diameter profiles, the crystallization effect was included in the elongational viscosity term. The drastic increase in elongational viscosity with the crystallization of fiber brought about the neck-like deformation of the diameter profile and the concentration of the stress to the amorphous regions strengthened it. The effects of the process conditions on the formation of the fiber structure were investigated from the numerical simulations. The variations of the quench air velocities did not affect significantly in the on-line profiles of the fiber diameter, temperature, and structure. However, the variations of take-up velocities affected significantly on the on-line profiles of them and the structure of spun fibers. Mass flow rate played an important role in the determination of fiber radius and temperature profiles, but its effect on the final crystallinity of spun fiber was very small.

키워드

참고문헌

  1. J. Non-Newtonian Fluid Mech. v.30 A. Ziabicki
  2. 最新の紡絲技術 纖維學會(編)
  3. J. Appl. Polymer Sci. v.47 H. Haberkorn;K. Hahn;H. D. Dorrer;P. Matthies
  4. High-Speed Fiber Spinning G. Vassilatos;B. H. Knox;H. R. E. Frankfort;A. Ziabicki(ed.);H. Kawai(ed.)
  5. Fundamentals of Fibre Formation A. Ziabicki
  6. J. Polym. Sci. v.A3 S. Kase;T. Matsuo
  7. J. Appl. Polymer Sci. v.11 S. Kase;T. Matsuo
  8. Text. Res. J. v.45 A. Prastaro;P. Parrini
  9. Sen-I Gakkaishi v.35 Y. Yasuda;H. Sugiyama;H. Yanagawa
  10. Sen-I Gakkaishi v.40 Y. Yasuda;H. Sugiyama;H. Hayashi
  11. Polymer Eng. Sci. v.21 M. M. Denn;D. K. Gagon
  12. Polymer Eng. Sci. v.22 H. H. George
  13. High-Speed Fiber Spinning J. Shimizu;N. Okui;T. Kikutani;A. Ziabicki(ed.);H. Kawai(ed.)
  14. High-Speed Fiber Spinning K. Katayama;M. G. Yoon;A. Ziabicki(ed.);H. Kawai(ed.)
  15. J. Appl. Polymer Sci. v.42 R. M. Patel;J. H. Bheda;J. E. Spruiell
  16. J. Appl. Polymer Sci. v.35 K. F. Zieminski;J. E. Spruiell
  17. J. Appl. Polymer Sci. v.39 J. H. Bheda;J. E. Spruiell
  18. J. Non-Newtonian Fluid Mech. v.50 S. Zahorski
  19. J. Appl. Polymer Sci. v.29 K. W. Hutchenson;D. D. Edie;D. M. Riggs
  20. J. Appl. Polymer Sci. v.33 W. P. Bell;D. D. Edie
  21. J. Appl. Polymer Sci. v.44 B. T. F. Chung;V. Iyer
  22. Text. Res. J. v.60 A. A. Hamza;M. A. Kabel;M. M. Shahin
  23. J. Appl. Polymer Sci. v.17 K. Nakamura;K. Katayama;T. Amano
  24. Melliand Textilberichte v.50 I. Hamana;M. Matsui;S. Kato
  25. Melliand Textilberichte v.50 I. Hamana;M. Matsui;S. Kato
  26. Finite Elements : An Instruction v.1 E. B. Becker;G. F. Carey;J. T. Oden
  27. Numerical Simulation of Non-Newtonian Flow M. J. Crochet;A. R. Davies;K. Walters
  28. Sen-I Gakkaishi v.44 K. Fujimoto;K. Iohara;S. Owaki;Y. Murase
  29. Sen-I Gakkaishi v.50 T. Kikutani
  30. Sen-I Gakkaishi v.48 S. Hayashi;K. Tani;H. Ishihara;H. Yasuda
  31. J. Appl. Polymer Sci. Symp. v.47 J. A. Cuculo;P. A. Tucker;G. Y. Chen