The Effect of Chemical Structure of Polyimides on the Miscibility of Polybenzimidazole (PBI)/Polyimide (PI) Blends

폴리이미드의 화학구조가 폴리벤즈이미다졸(PBI)/폴리이미드(PI) 블렌드의 상용성에 미치는 영향

  • 김영준 (성균관대학교 공과대학 섬유공학과)
  • Published : 1996.05.01

Abstract

Miscibility of polymer blends prepared from poly(2,2(m-phenylene)-5,5'-ben-zimidazole), PBI, and aromatic polyimides(Pls) were investigated as a function of structural variations of polyimide component utilizing DSC and FTIR spectroscopy. Film and powder blend samples were prepared from the solution of PBI and PIs in N,N-dimethylacetamide(DMAc) and/or 1-methyl-2-pyrrolidinone(NMP). The miscibility of the PBI/PI blends was found to improve with increasing polarity of the polyimide component. For example, 3,3'-diaminodiphenyl sulfone(3,3'-DDS)/3,3',4,4'-benzophenone tetracarboxylic dianhydride(BTDA), 3,3'-DDS/4,4'-ox-ydiphthalic anhydride(ODPA) and 4,4'-isopropy lidene dianiline(BIS-A)/ODPA polyimide systems were miscible with PBI. However, when the polar polyimide components(C=O, O and SO ) were replaced by non-polar components such as hexafluoropropylidene group((CF ) C) miscibility was significantly reduced. Thus, immiscibility was obtained for polyimides based upon 5,5'-[2,2,2-trifluoro-1-(trifluoromethyl) ethylidene] his-1,3-isobenzofuranedione (6FDA) such as 4,4'-di-aminodiphenyl sulfone(4,4'-DDS)/6FDA,4,4'-oxydianiline(4,4'-ODA)/6FDA and BIS-A/6FDA polyimide systems. Non-hydrogen bonded solubility parameters for the PBI and Pls were estimated using group molar attraction constants(F) and group molar volume(V). The observed miscibility behavior was in good accord with the prediction of miscibility by the non-hydrogen bonded solubility parameter approach.

Keywords

References

  1. Encyclopedia of Polym. Sci. Eng. v.11 A. Buckley;D.E. Stuez;G.A. Serad;H. Mark;N. Bikales(eds.)
  2. 34th International SAMPE Symposium D.H. Chen;Y.P. Chen;C.A. Arnold;J.C. Hedrick;J.D. Graybeal;J.E. McGrath
  3. Macromolecules v.23 J. Grobelny;D.M. Rice;F.E. Karasz;W.J. MacKnight
  4. Polym. Bull. v.16 L. Leung;D. J. Williams;F. E. Krasz;W. J. MacKnight
  5. J. Polym. Sci. Part B : Polym. Phys. v.26 G. Guerra;D.J. Williams;F.E. Krasz;W.J. MacKnight
  6. Macromolecules v.21 G. Guerra;S. Choe;D.J. Williams;F.E. Krasz;W.J. MacKnight
  7. Macromolecules v.24 P. Musto;F.E. Karasz;W.J. MacKnight
  8. J. Polym. Sci. : Part B v.29 K. Liang;G. Banhegyi;F.E. Karasz;W.J. MacKnight
  9. Polymer J. v.21 D.S. Lee;G. Quin
  10. Polymer v.33 V. Janarthanan;F.E. Karas;W.J. MacKnight
  11. 5th Quarter Technical Report, Polymer Blends, DARPA Order No. 6045, AFOSR Contract F49620-88-C-0014 M. Jaffe;M. Glick
  12. Polymer v.31 M.M. Coleman;C.J. Serman;D.E. Bhagwagar
  13. Makromol. Chem., Macromol. Symp. v.51 J.E. McGrath;M.E. Rogers;C.A. Arnold;Y.J. Kim;J.C. Hedrick
  14. Macromolecules v.51 Y. J. Kim;T. E. Glass;G. D. Lyle;J. E. McGrath
  15. Macromolecules v.11 D. Patterson;A. Robard
  16. Macromolecules v.18 T.K. Kwei;E.M. Pearce;B.Y. Min
  17. CRC Handbook of Solubility Parameters and Other Cohesion Parameters A.F.M. Barton
  18. Personal Communication M. Coleman