Preparation and Drawing Mechanism of High Strength Nylon 6 Fiber by Gel-spinning/Drawing

겔방사/연신에 의한 나일론 6 섬유의 고강도화와 연신 메카니즘에 관한 연구

  • 이규원 (건국대학교 공과대학 섬유공학과) ;
  • 조재환 (건국대학교 공과대학 섬유공학과, 수원대학교 공과대학 고분자공학과)
  • Published : 1996.04.01

Abstract

Three kinds of nylon 6 synthesized by an anionic polymerization were gel-spun using benzyl alcohol as a solvent and subsequently the gel-spun fibers were hot-drawn to various draw ratios. To analyze the gelation behavior of solution, sol-gel transition temperature and gelation time were measured. The sol-gel transition temperature increased with the increase of polymer concentration and the molecular weight. Optimum concentration of solution for gel-spinning was about 70 weight percent. It appeared that gels grew three-dimensionally according to the gel growth index calculated from the measured gelation time, which was evidenced by the presence of spherical gels in scanning electron microscopic measurement. However the spherical gels changed to the fibril structure after drawing. Modulus and tenacity increased almost linearly with the increase of draw ratio. Drawing behavior of nylon 6 gel fiber was different from that of ultra-high molecular weight polyethylene gel on basis of the relationship between tenacity and modulus, which is likely to be ascribed to the difference of gel structure.

Keywords

References

  1. J. Macromol. Sci. Rev. Macromol. Chem. Phys. v.C35 R. S. Porter;L.-H. Wang
  2. Ultra-high Modulus Polymers A. Ciferri;I. M. Ward
  3. Polymer v.26 S. Gogolewski;A. J. Pennings
  4. J. Appl. Polym. Sci. v.24 A. E. Zacharidiades;R. S. Porter
  5. Polymer v.27 H. H. Chuah;R. S. Porter
  6. Jap. Patent, 59-17891
  7. J. Polym. Sci.: Polym. Phys. Ed. v.19 A. Richardson;I. M. Ward
  8. J. Mat. Sci. v.15 B. Kalb;A. J. Penning
  9. Polym. Commun. v.25 A. Peguy;R. St. Manley
  10. J. Mat. Sci. v.20 P. Cebe;D. T. Grubb
  11. Polymer v.33 M. Matsuo;R. Sato;N. Yanagida;Y. Shimazu
  12. J. Appl. Polym. Sci. v.37 M. Matsuo;K. Inaba;H. Fujiwara;M. Shibayama;J. H. Chen;S. Nomura
  13. Polymer v.27 H. H. Chuah;R. S. Porter
  14. Polymer Handbook, (Third Ed.) J. Brandrup;E. H. Immergut
  15. J. Polym. Sci. v.17 D. R. Holemes;C. W. Bunn;D. J. Smith
  16. J. Appl. Polym. Sci. v.27 J. Gianchandani;C. W. Bunn;D. J. Smith
  17. Polymer v.31 X. M. Xie;A. Tanioka;K. Miyasaka
  18. Polymer v.34 J. W. Cho;H. Y. Song;S. Y. Kim
  19. Macromolecules v.8 M. Cooper;J. Manley
  20. Phil. Trans. R. Soc. v.A221 A. A. Griffith
  21. Pure Appl. Chem. v.55 A. J. Pennings;J. Smook;J. de Boer;S. Gogolewski;P. F. van Hutten
  22. Polymer v.28 J. W. Leenslag;A. J. Pennings
  23. Polymer v.31 I. Masayoshi;T. Katsumi;K. Tetsuo
  24. J. Appl. Polym. Sci. v.26 E. Balcerzyk;W. Kozlowski;E. Wesolowska;W. Lewaszkiewicz
  25. Polym. Eng. Sci. v.17 A. Peterlin
  26. 纖維高分子材料硏究所 硏究報告 no.172 H. Kyotani;Y. Tanabe