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3D Deinterlacing Algorithm Based
on Wide Sparse Vector Correlations

Yeong-Taeg Kim

Abstract

In this paper, we propose a new 3-D deinterlacing algorithm based on wide sparse vector correlations and a ver-
tical edge based motion detection algorithm, which is an extension of the deinterlacing algorithm proposed in [10,
11] by the authors. The prooised algorithm is developed mainly for the format conversion problem encountered in
current HDTV system, but can also be aplicable to the double scan conversion problesm frequently encountered in
ths NTSC systems. By exploiting the edge oriented spatial interpolation based on the wide vector correlations, visu-
ally annoying artifiacts caused by interlacing such as a serrate line, line crawling, a line flicker, and a large area
flicker can be remarkably reduced since the use of the wide vectors increases the range of the edge orientations
that can be detected, and by exploiting sparse vectors correlations the H/W complexity for realizing the algorithm
in applications cam be significantly simplified. Simulations are provided indicating thet the proposed algorithm
results in a high performance comparable to the performance of the deinterlacing algorithm, based on the wide vec-

tor correlations.

1. Introduction

In the development of current HDTV systems, it is indispen-
sable to employ an interlaced to progressive rate conversion
(IPC) system due to the variety of the standard source for-
mats adopted in HDTV Initially, IPC algorithms were devel-
oped for NTSC systems, where interlacing scheme is em-
ployed to use a channel bandwidth efficiently, to reduce the
intrinsic aliasing caued by interlacing such as a serrate line,
line crawling, a line flicker, raster line visibility, and a field
flicker. Such artifacts become increasingly objectionable with
larger displays. To lessen such artifacts, many algorithms
have been proposed in literature [1]—[8], and the consensus
is to recover the lines unavailable in the interlaced images
through signal processing. Examples of the algorithms include
a simple line doubling scheme, vertical filtering, edge direction
dependent deinterlacing [ 3], nonlinear interpolation schemes
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based on a weighted median filter [4], based on a FIR median
hybrid interploation [5], based on direction dependent median
filtering [6]. and motion adaptive schems {7, 8}.

Recently in [10], a deinterlacing algorithm based on
weighted wide vector correlations was proposed by the author
for the format conversion problem encountered in the develop-
ment of current HDTV system. This algorithm introduces the
use of wide vectors in estimating the spatial correlations at a
certain point, which is found to be effective in detecting vari-

* ous edge orientations to determine the direction of spatial in-

terpolation. One drawback of this aproach is found in its H/W
complexity for computing the correlations between wide vec-
tors for various directions. To lessen the H/W complexity
while maintaining the performance of the algorithm based on
wide vector correlations, we explicitly introduce the use of
sparse vectors in_this paper. Whereas the use of wide vector
correlations increases the capability of the algorithm in
detectomg varopis edge-orientations, the use of sparse vec-
tors makes it possible to implement the algorith, with less H/
W complexity. The detailed descriptions of the proposed algo-
rithm along with simulation results are followed in the subse-
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Figure 1 The flowchart of the proposed 2-D deinterlacing al-
gorithm based on wide sparse vector corrlations.

quent sections.

1. 2-D Deinterlacing Algorithm Based on Wide Sparse Vector
Correlations

Let {I(n, n,)} denote a given image and {I(n;, n,)} denote
a low-pass filtered image of {I(n, n,)}. We assume that the
given image {I(n, n,)} is interlaced, that is, only odd lines or
even lines of {I(n, n,)} are observed at a certain field inter-
val. For the notational simplicity in the sequel, it will be as-
sumed that (n,, n,) represents the sampling point whose value
is not available in interlace mode at a certain field. Thus, I n,,
n,) will designate the signal value that we wish to estimate
from a given interlaced image. The proposed algorithm is com-
posed of the following steps : (1) vertical filtering mode, (1 )
narrow vector correlation mode, and ( M ) wide sparse-vector cor-
relation mode. The detailed description of the proposed 2-D al-
gorithm based on the use of wide sparse vector correlations is
in order referring to the flow chart shown in Fig. 1.

As a first step, we consider a vertical interpolation. Due to
its simple operation and implementation, a vertical interpola-
tion is widely used in practice for the problem at hand. In
many cases, 1t provides pleasing results since an interlaced
Image can be regarded as a decimated image by 2 in vertical
direction and a vertical filter has a low-pass filter character-

istic. The vertical interpolation is accomplished simply by tak-
ing the weighted combination of the nearest neighbor samples
in vertical direction. Letting Ju(n,, n;) as the estimation of I(n
» Mz) by the vertical interpolation using 2N neighbor lines, it
can be expressed as
N
Iv(ny, ny)=

i=- N+1

w,-I(n1+2i-—1, 712), (1)

where wi is the weight of each sample. This method intrinsical-
ly introduces blurring, however, since the vertical sampling
rate in the interlaced image typically is fall behind the Nyquist
sampling rate in real image, Hence, if there exists a vertical
edge between the samples I(n;—1, n,) and n,+1, n,) the
vertical filtering smears out the details and, as a consequence,
it introduces some annoying visual artifacts such as a serrate
line and line flickering. Hence, it can be easily understood
that detecting the existence of an edge in vertical direction in
applying vertical interpolation is of importance, and the meth-
od should be adjusted accordingly.
For determining the correlation between the neightbor lines
in vertical direction, we consider the following quantity .
Dv=|In~1mn)—In+1n,)|, (2)
where we used the low—pass filtered signal in order not to de-
crease the reliability on this quantity that might be affected
by some unwanted high frequency components in a given
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image such as an impulsive noise. Letting Is(n;, n,) as the out-
put of the proposed 2—D algorithm, the estimate of I(n,, n,)
Is given as

I{ny, n;)=I(n, n,),if D,<T, (3)
where T» is a constant. For the case in which D» > T,, howev-
er, we note that the estimation in (1) is not reliable since D,
> T,, implies the existence of an edge in vertical direction.
Hence, for Dv>Tv, an imterpolation method appropriately
chosen based on edge—orientation should be taken into ac-
count to prevent unwanted artifacts. Some algorithms in this
category are discussed in [3]. In our algorithm, for Dv>To,
we move to the following step utilizing a correlation between
narrow vectors within a small region.

Let us define the 3—long vectors u(l) and v(m),
respectively, as

I(n:—l, nz+l"1) u-l(l)
u(z)=[ m—1, nat1) ] let [ wl ) ] )
1(m—1, n,+1+1) w(!)

and

I(m+1, na+m—1) U—z(m)
v(m>=[ 1 +1, notm) ]let [vo(m) ]
Im+1, no+m+1) 4 = Som)

(5)

where [ and m represent the respective positions of those vec-

tors in the 7, axis with respect to the interpolation point (7, n
,). Based on these vectors, we define the weighted absolute
difference between them as

1
Dyl m)= 2 | u(1)—S(m) | Ci 6)
i=-1

where C; 1s a normalized weight. Note that this quantity can be
used to monitor how much the vectors, u(l) and v(m), are
alike. For instance, the vectors u(l)and v(m) will represent
the same pattern if and only if DI, m)=0. Clearly, estimat-
ing D1, m) for different values of ! and m can be a guideline
to detect the direction to which the interpolation would be fol-
lowed. Hence, we find the respective locations of u(l) and v
(m), denoted as [” and m’, such that D(1’, m") is to be the
minimum over a searching region [, mE[—R, R]. In other
words, we find (I", m”) such that

DU, m’ )=Min{D(L, m)|!=—R, -, R, and m=-R, -,
R}. (7)

Fig. 2. shows the respective locations of the vectors u(!) and
v(m) for all possible (I” m") satisfying (7) when R=1, where
the samples in u(l) are connected by arrows with the associat-
ed samples in v(m) in computing D,(, m) given in (6). This
figure clearly indicates how the sample I(n; n,) should be
interploated from the neighbor sample when (I’ m”) is found.

v(-1) : v (0) @ 9 ¥ v [
T, m)=(-1,-1) @, m")=(-1, 0) r,m)=(-1,1)
u (0) [ ] [ J
............... ‘(n.v..-. eeaosaane
v (0)
', m")=(0, 0) ', m)=(0, 1)
u(

@, m)=(1,-1)

.......... mml

v (0) -Z
@, m’)=(1, 0)

v (1)
@, m)=(1, 1)

Figure 2 ; The respective locations of the Vectors u() and v(m) for all possile (', m”) when R=1
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Hence, the directions of the strongest spatial correlations are
clearly shown in Fig. 2 for all (I" m"). In our algorithm, E=1
is used not only to save the associated H/W complexity, but
also to prevent an error in detecting the direction of the
strongest spatial correlation. Based on the values of (I" m’)
found, the proposed algorith, estimates [(n,, n,) as

I(ny, n)=(Kn—1, no+p)+ln—1, no+g)+ i n+1, nt
r)+I(n+1, n,+s))/4 (8)

where

(pgrs)=

(Oy Oy Oy O)y lf(l, ’ m’:(——l’ —1)y (07 0)7 (111)
(_lv 0, 0, 1)7 if (l’ 3 m’):(—]_, O)y (Oy 1)

(_17 ~1! 17 1)1 if (l, s m'):(—l’ 1)

0, 1, =1, 0), if (/', m")=(0, —1), (1, 0) (9)
(11 1v hlr _l)v if (l’ ’ m’)=(1, _1)

whose functionals can be easily understood from Fig. 2

The method described previously is improper, however,
when there is a high correlation in the direction of low slope
around the point (n; n.). Note from Fig. 2 that the method
based on narrow vector correlations can detect the direction
of the spatial correlation ranging from —45° to 45°. It is obvi-
ous that the value D1’, m") will be large if there exists a
high correlation in the direction of low slope. Thus, we com-
pare the quantity Df1’, m") with a given constant T}, and in-
terpolate I{n;, n,) as If the value D{!’, m") exceeds T}, it is
highly probable that the edge-orientation around the interpo-
lation point is associated with a low slope. Note that simply
enlarging the searching bound, R, does not guarantee that the
narrow vector correlation based method can handle such case
correctly as long as we use 3-long vectors u(l), v(m). To ac-
count for the existence of the high correlation in low direction
when DJ(1l’, m")>T, we propose to proceed the next step
based on wide sparse vector correlations.

I(ny, n)=1(n;, nx), of D(l',m" )< T (10)

Define the wide sparse vectors Ug(l) and Vs(m), defined as

U (D)
Uold) ] an
IR0

1

n,—1,n~L—Il+m
U =] Kni=Lnotd) |1t |
ny—1, n.+L+D - =

47
and
Wn+1, n—T—=1+m) V_i(m)
Viom) =[ Wt Ln=tem) i [ Vikm) | (12)
I(n+1, n+L—1+m) 4 = -Vi(m)
>, [6-6-0 0 -0 0-6- -0 e}
U Uyth) uyih
v, 0 v‘,w)";’:‘ :‘ v, (0
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nl n, nyHl

Figure 3 : The visual formulation of the wide sparse
vectors U (1) and V(0)

where we assume 2L+1>3. Observe that the vectors Us(l)
and Vs(m) are 3-long in length. Howevgr, two objacent sam-
ples iIn Ug(l) and Vs(m) are L-samples away spatially.
Hence, it can be said that the virtual length of the sparse vec-
tor is 2L+1. Note also that the center locations of Ugl) and
Vs (0) are symmetric with respect to the point (n, n,),
which is shown in Fig. 3 where the visual formulation of the
wide sparse vectors Ufl) and Vg (0) is illustrated. The vec-
tor Vs(m) is then obtained by shifting Vs(0) by m in the n,
axis.

With a similar motivation behind the definition of D/, m)
give In (6), we define

Do(l, m)= Z | UAD—Vi(m) | W, (13)
i=-1

where W /s are normalized weights. By estimating D.(}, m)
over a searching region / € [—S, SJ, we also find (", m")
such that

DI, m") =Min{D,(l, m)|I1=-S5, -, 0, -, S,and m
=-101}, (14)
where we will limit the searching bound as S< L. Once the (/
" m") is found, then the interpolation of I(n, n,) by this
method, I;(n;, 1), is expressed as

L(m, 712)___1(11,—1, nyt+ [ )+I(2n,+1, n—0 +m") (15)
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and thus, I n;, n,)=1{n,, n,).

Il. 3—D Deinterlacing Algorith, Based on Edge —Dependent
Motion Switching

In the previous section, we proposed a 2-D deinterlacing al-
gorithm based on weighted wide sparse vector correlations. In
this section, we propose a 3-D deinterlacing algorith, com-
posed of the 2-D algorithm described in the previous section
and an edge-dependent motion switching method described
below.

Suppose {I" (n;, n,)} and {I*(n, n,)} are the previous and
next fields of the given interlaced image {I(n, n,)} . Based
on these fields, the temporal interpolation for I{ n;, n,), which
will be denoted as I{n,, n,), is given as

L, n)=(I(ny, n)+F(n, n,)) /2. (16)

When there is no motion between {I"(n, n,)} and {I*(n,
nz)} around (n,, n,), it is clear that the quantity given in (16)
will provide a good estimate of I(n,, n,). However, if there oc-
curs a motion, I,(n,, n,) will introduce an artifacts. Thus, de-
tecting a motion in a proper fashion is an important issue in
temporal Interpolation in order not to cause serious visual
artifacts. The basic philosophy behind our algorithm for de-

tecting a motion is to reduce artifacts resulting from detection
errors as much as possible.

Let us define the windows W~ and W+, respectively, as

0 I'(n|—2, nz) O
W"=[I_(nl,nz~1) I"(n), ny) I—(nl,n2+1)]
0 I"(n,+2,n,)

Wz Wi Wy
0 W: 0

=[O Wr 0] an

and

0 I*(n,—2, ny) 0
W*=[I+(n,, nz—l) I+(n|7 nz) I+(n1, n2+1)]
0 I+(n1+2, nz)
0 Wro
=|wr wi wi] (18)
0 w&o 4.

Based on W~ and W*, we consider

5
D,=E | Wy =Wi | (19)

i=1

where as are coefficients. The quantity D, is basically to
measure the correlation between the two fields around (n,, n,)
in temporal direction. That is, if we observe large value of D,
we can say that there occurs a motion around (n,, n,). Hence,
for D;>T,, where Tmis a constant, it is clear that the output
of the proposed 2-D algorithm, f( ny, n2), should be given by

i (n;, np) =Is(nb n2), (20)

since D> T, implies that a motion is detected. On the con-
trary, however, D,< T, does not simply imply no-motion, but
implies either “no motion” or “fast motion”. It is well-known
that a failure in discriminationg fast-motion from no-motion
causes serious artifacts such as tearing artifact. However,
theoretically, it is not possible to distinguish them by simply
observing D, since the temporal sampling rate always behind
the Nyquist rate in practice. Thus, most of the methods in mo-
tion adaptive interpolation algorithms are focused on how to
reduce the artifacts resulting from the failure in detecting
fast-motion. For this purpose, for D,<T,, we further consider

D= | I(nl_lr "2)_I(n1+1, 712) | s 21

which is the correlation in vertical direction, or which corre-
sponds to the existence of an edge in vertical direction. It
should be noted that the visual effect of artifacts resulting
from a failure in detecting fast-motion is reduced as the
value of D increases. In other words, for large D, I{n, n,)
would be good enough visually although when there occurs a
fast motion. Thus, we have

1(ny, n)=I(n, n), if D>T, (22)

where T is a constant. In case when D<T, we consider the
quantity

_[Ani—1, n)+An,+1, n,)
5| :

2

which designates the difference between the line average and
the temporal average. The quantity 8 basically is then used to
minimize an uncertainty in deciding a motion. That is, if fis
too large combined with D<T, it might be considered that
there occurs a fast motion although D,< T, This quantity was
also addressed in [9]. Hence, based on the value of 8 we
have

_I(ny, m)+I(n, nz)] (23)
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i(nb n2)=1{n1, nZ)y 1f B> Ts

l(nb n2)=1,(n1, nz): ifﬁg Ts

V. Simulation Results

(24)

(25)

In order to illustrate the performance of the proposed algo-
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rithm in interlaced to progressive conversion problem, we
present some simulation results in this section. Fig. 4 and 5
show the originally given image and its interlaced image com-
posed of four different imgages. The resolution image we used
1s 720X 480. In the interlaced image, we put zero-valued lines
for the lines unavailable. For comparison, the results of apply-
ing line doubing method and vertical interpolation method are
depicted in Fig. 6 and Fig. 7, respectively. In these results,
blurring and severe artifacts are observed. Especially, serrate

Figure 4. The originally given image composed 720 x 480 pixels,

Figure 5 . The interlaced image obtained from Fig. 4
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Figure 7 © The result of vertical filtering.

lines are introduced around edges in the direction of low
slopes. The result of the algorithm based on weighted wide
vector correlations proposed in [10] is shown in Fig. 8, where
L=4 and Dv=T,=30 are used, and we present the result of
the proposed 2-D algorithm based on wide sparse vectors in
Fig. 9 where we used the same parameters as the parameters
used in obtaining the result shown in Fig. 8. The result of the
proposed 3-D algorithm is shown in Fig. 12 and the result of
a 3-D algorithm based on median approach is depicted in Fig.
figimed for comparison. For close comparisons of the algo-

rithms, we magnified parts of the resulting images as shown
in Fig. 10. From these results, first, it can be observed that
the method based on wide vector correlatons shows a a high
performance around various edges. Observe that clean lines
are recovered around edges having low slopes with the meth-
od based on wide vector correlations. Netx, if we closely com-
pare thae results in Figs. 8 and 9, the results of the proposed
algorithm based on wide sparse vector corrlation is compara-
ble to that of the wide vector correlation based algorithm. If
we note that the proposed algorith, requires much less H/W
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Figure 9 : The result of the proposed algorithm based on wide sparse vector correlation.

complexity than deinterlacing algorithm based on wide vector
correlation, the advantage of the proposed algorithm in this
paper is clearly seen.

V. Conclusion

In this paper, we have presented a 3-D algorithm for IPC
based on wide sparse vector correlations leading to a high per-
formance in deinterlacing and a neat H/W structure.
Throughout simulations, it has been shown that the proposed

algorithm is comparable to the deinterlacing algorithm
utilizing wide vector correlations in terms of performance. Be-
sides, the proposed algorithm requires much less H/W com-
plexity than the algorithm based on wide vector correlations
in [10]. Thus, it can be seen that the proposed algorithm is
not only suitable for interpolating & missed sample around
various edges, but also suitable for H/W implementation in
applications.
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Figure 10. Enlarged view of the reconstruction for comparison. Left column(top to bottom) : Original image, reconstructed
image using line doubling method, and the reconstructed image using wide vector corrleaiton based alogrithm. Right column
(top to bottom) : Interlaced image, reconstructed image using vertical filtering and reconstructed image using the proposed al-

gorithm based on wide sparse vector correlation.

[1] C. Hentschel, “Linear and Non-linear Processing for

flicker reduction,” IEEE Tr. on Consumer Electronics, vol.
33, no. 3, pp. 192-198, 1987.

[2] C. Hentschel, “Comparison Between Median Filtering
and Vertical Edge Controlled Interpolator For Flicker
Reduction,” IEEE Trans. on Consumer Electronics, vol.
35, no. 3, pp.279-289, August 1989.

[3] D. Bagni, R. Lancin, S. Landi, and S. Tubaro, “HD-TV
Spatio-Temporal Upconversion,” Proc. Int. Workshop on
HDTV, 1994.

[4] J. Huhola, A. Nieminen, J. Salo, and Y. Neuvo, “Scan
Rate Conversion Using Weighted Median Filtering,”
Proc. IEEE ISCAS-89, Portland, USA, pp. 433-436,
May 1989.

[5] A. Lehtonen and M. Renfors, “Non-linear Quincunx In-
terpolation Filtering,” Proc. SPIE’s Visual Communica-

tions and Image Processing, Lausanne, Switzerland, pp.
135-132. Oct 1990.

[6] T. Doyle, “Interlaced to sequential Conversion for EDTV
Applications,” pp. 421-430, Signal Processing of HDTV,
L. Chiariglione Ed., Elsevier Science Publishers, North
Holland, 1988.

[7] N. Suzuki et al., “Improved Synthetic Motion Signal For
Perfect Motion-Adaptive Pro-Scan Conversion in
HDTV Receivers,” IEEE Trans. on Consumer Electronics,
vol. 33, no. 3, pp.266-271, August 1989.

[8] C. P. Markhauser, “Motion Adaptive Pro-Scan Convert-
er with Two Dimensional Contour Enhancement,” IEEE
Trans. on Consumer Electronics, vol. 36, no. 2, pp. 110-
114, May 1990.

[9] R. Simonetti et al., “A Deinterlacer for IQTV Receivers
and Multimedia Applications,” [EEE Trans. on Consumer



EFes=ra] 1996d A 13 Al1E

53

Figure 12 : The result of the 3-D algorithm

Electronics, vol. 39, pp.234240, Aug. 1993.

[10] Y.-T. Kim, “A Deinterlacing Algorithm Based on
Weighted Wide Vector Correlations,” Proc. International
Conference on Signal Processing Applications and Technol-
ogy, Boston, MA, USA, Oct. 24-26, 1995.

117 Y.-T. Kim and Y. H. Cho, “Motion Adaptive
Deinterlacing Algorithm Based on Wide Vector Correla-
tions and Edge Dependent Motion Switching,” Proc. In-
ternational Workshop on HDTV, Taipei, Taiwan, RQOC,
Nov. 15-17, 1995.



54 7A%ge : 3D Deinterlacing Algorith, Based on Wide Sparse Vector Correlations

M A &K

&k #

19629 11€ 1394,

19889 28 AAgtn AT £

19923 1€ University of Delaware #7)38 AA}
1993 8%¥ University of Delaware @7)38 A}
A AR AsAe 7L AYDT7d




