Rubbery 고분가 막을 이용한 휘발성 유기화학물의 제거 및 회수

Removal/Recovery of VOCs Using a Rubbery Polymeric Membrane

  • Cha, Jun-Seok (Atmospheric Chemistry Division, Air Quality Researeh Department National Institute of Environmental Research, Seoul 122-040, Korea)
  • 발행 : 1996.09.01

초록

실리콘 코팅한 복합막을 이용하여 톨로엔이나 메탄올 같은 휘발성 유기화합물의 제거 및 회수에 관한 연구를 수행하였다. 사용된 막은 코팅층의 두께가 얇고($~1\mu$m), 지지층의 기고율이 커서 투과저항은 적었으며 코팅층과 지지층은 플라즈마 중합에 의해 결합되어 있어서 높은 압력에도 견딜 수 있었다. Feed의 유속은 60cc/min. 이하일 때 사용된 모듈에 위해 휘발성 유기화합물의 제거율은 96~99%이었으며, feed의 농도가 높을수록 제거율은 더 증가하였다. 이 공정은 휘발성 유기화합물의 농도가 높고 유속이 낮은 흐름을 처리하는데 아주 적합함을 알 수 있었다. 사용된 막을 통한 휘발성 유기 화합물들의 투과도는 $4~30 \times 10^{-9}gmol/sec \cdot cm^{2}\cdot cmHg$이었고, 질소의 투과도는 $3~9 \times 10^{-10}gmol/sec \cdot cm^{2} \cdot cmHg$의 범위에 있었다. 휘발성 유기화합물과 질소의 선택도는 유속과 휘발성 유기화합물의 농도에 따라 톨루엔/질소의 경우 10~55, 메탄올/질소의 경우 15~125의 값을 얻었다.

Common volatile organic compounds(VOCs) such as toluene and methanol were removed successfully from N$_{2}$ using a novel silicone-coated hollow fiber membrane module. This novel membrane is a thin film composite(TFC) and was highly efficient in removing VOCs selectively from a N$_{2}$ stream. This membrane had some innate advantages over other silicone-based membrane in that the selective barrier was ultrathin(~1 $\mu$m) and the porosity of the polypropylene substrate was high which leads to a low permeation resistance. The substram was very strongly bonded to the coating layer by plasma polymerization and can withstand a very high pressure. A small hollow fiber module having a length of 25cm and 50 fibers could remove 96~99% of toluene as well as methanol vapors when the feed flow rate was up to 60cc/min. The percent removal of VOCs were even higher when the feed inlet concentration was higher. This process is especially suitable for treating streams having a low flow rate and high VOCs concentration. The permeances of VOCs through this membrane was in the range of $4~30 \times 10^{-9}gmol/sec \cdot cm^{2}\cdot cmHg$ for both toluene and methanol, and nitrogen permeance was between $3~9 \times 10^{-10}gmol/sec \cdot cm^{2} \cdot cmHg$. High separation factor between 10~55 for toluene/N$_{2}$ and 15~125 for methanol/N$_{2}$ were obtained depending on the feed flow rate ranges and feed VOCs concentration levels.

키워드

참고문헌

  1. J. Memb. Sci. v.61 U. Sander;H. Janssen
  2. AIChE Symp. Series v.85 no.272 J. G. Wijmans;V. D. Helm
  3. Ann. Rev. Mater. Sci. v.11 S. A. Stern;H. L. Frisch
  4. United States Patent, No. 4,553,983 R. W. Baker
  5. J. Memb. Sci. v.31 R. W. Baker;N. Yoshioka;J. M. Mohr;A. J. Khan
  6. J. Appl. Pol. Sci. v.43 X. Feng;S. Sourirajan;F. H. Tezel;T. Matsuura
  7. Ind. Eng. Chem. Res. v.32 X. Feng;S. Sourirajan;F. H. Tezel;T. Matsuura
  8. J. Memb. Sci. v.61 I. Blume;P. J. F. Schwering;M. H. V. Mulder;C. A. Smolders
  9. AIChE Symp. Series v.82 no.250 K. V. Peinemann;J. M. Mohr;R. W. Baker
  10. Ph. D. Dissertation, New Jersey Inst. of Tech. J. S. Cha
  11. Ph. D. Dissertation, Stevens Inst. of Tech. H. Papadopoulous
  12. Membrane Gas Separation Progress in "Filtration an Separation" v.4 A. Sengupta;K. K. Sirkar;Wakeman, R. J.(ed.)
  13. J. Memb. Sci. v.36 H. Paul;C. Philipsen;F. J. Gerner;H. Strathmann
  14. Pure & Appl. Chem. v.58 no.12 H. Strathmann;C. M. Bell;K. Kimmerle
  15. J. Memb. Sci. v.8 J. M. S. Henis;M. K. Tropodi
  16. J. Memb. Sci. v.36 no.4 K. Kimmerle;C. M. Bell;W. Gundernatsch
  17. AIChE Symp. Series v.85 no.272 R. O. Behling;K. Ohlrogge;K. V. Peinemann
  18. Chem. Eng. Sci. v.38 no.4 S. L. Matson;J. Lopez;J. A. Quinn