RERSE B3E FIK
19965 2H 57

Adaptive Scheduling in Flexible Manufacturing Systems

Sang Chan Park* - Narayan Raman®™ - Michael J . Shaw*

ABSTRACT

This paper develops an adaptive scheduling policy for flexible manufacturing systems. The
inductive learning methodology used for constructing this state-dependent scheduling policy
provides an understanding of the relative importance of the various system parameters in
determining the appropriate scheduling rule,

Experimental studies indicated the superiority of the suggested approach over the alterna-
tive approach involving the repeated application of a single scheduling rule for randomly
generated test problems as well as a real system, and under both stationary and
nonstationary conditions, In particular, its relative performance improves further when there
are frequent disruptions, and when disruptions are caused by the introduction of tight due

date jobs, one of the most common sources of disruptions in most manufacturing systems.

1. Introduction

A practical consideration for many manufacturing systems is their ability to withstand constant
disruptions such as the unexpected arrival of “hot” jobs with shorter due dates, machine
breakdowns, etc. Consequently, an important measure of the effectiveness of any scheduling ap-
proach is its robustness in the face of such disruptions. While there is some recent research deal-
ing with the generation of robust scheduling rules, it has largely addressed static systems only.
Previous investigations of scheduling rules in dynamic systems have largely considered their per-

formance of any dispatching rule observed under these conditions will continue to hold when there

* Department of Industrial Management, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong,
Yusong-gu, Taejon, KOREA, 305-701, SANGPARK @cais. kaist. ac. kr, phone: 82-42-869-2920, fax: 82-42-869-2910
= Department of Business Administration, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

58 Sang Chan Park, Narayan Raman, Michael J. Shaw BB

are frequent disruptions,

This paper proposes an adaptive approach in which the dispatching rule selected at a given
point in time is determined by the existing state of the system. There has been significant re-
search done in identifying dispatching rules that are superior. The major finding is that there is no
one rule that clearly dominates others, In order to explain the somewhat inconsistent results
obtained by various researchers, Baker (1984) proposes that the relative effectiveness of any rule
depends upon the system parameters incorporated in the study. For the objective of minimizing
mean job tardiness, he identifies due date tightness and system utilization levels as two
parameters that could result in crossovers among the various dispatching rules in a dynamic job
shop. His results suggest that it may be possible to improve system performance by implementing
a scheduling policy rather than a single dispatching rule. Such a policy should be adaptive in that
it should be able to identify the current state of the manufacturing system, and should then be
able to decide upon the appropriate dispatching rule to be used,

The required mapping rules between the current state of the manufacturing system and the ap-
propriate dispatching rule are constructed through an inductive learning approach. This approach
utilizes a set of training examples to construct the knowledge base in the form of a decision tree.
There are two major advantages in using inductive learning. First, it can be readily modified to in-
corporate system-specific attributes both in qualitative and quantitative terms. In so doing, it
satisfies a major requirement of any scheduling approach that can be implemented in a real sys-
tem. Second, it has the capability of incremental learning that enables it to accommodate new
attributes as well as new dispatching rules as they become available. It is, therefore, able to con-
stantly improve upon its performance, While, theoretically, these two features can be incorporated
in many other approaches, such as regression, the cost of doing so is usually quite high because it
entails generating the dependence relationship afresh. In inductive learning, however, the acqui-
sition of incremental knowledge can be incorporated in a modular fashion,

The proposed pattern-directed scheduling (PDS) methodology is general enough to be used in a
wide variety of manufacturing scenarios. In this paper, we illustrate the use of this approach for
solving the mean tardiness problem in a dynamic flexible manufacturing system (FMS). In this
study, first, we augment the dispatching rule selection tree with a meta-tree in order to reduce
system nervousness. This meta-tree comprises decision rules that map the current state of the sys-
tem to a smoothing constant which, in its turn, determines the threshold level required for
effecting any change in the dispatching rule used. Second, we propose a systematic approach for
incorporating incremental learning towards rule refinement in the decision trees. Third, we extend
the investigation of the relative performance of the proposed methodology to the ancillary

company that manufactures fuel delivery systems for passenger cars and light trucks to discuss

HI3R HI% Adaptive Scheduling in Flexible Manufacturing Systems - »

the efficacy of using PDS approach in a real manufacturing facility.

This paper is organized as follows. In Section 2, we present the sets of system parameters and
dispatching rules considered in this study. In Section 3, we first overview a generic inductive
learning approach, and subsequently, discuss the refinements developed in this study for the mean
tardiness problem. We conclude this section with a discussion of the decision tree generated and
its ability to synthesize insights into the problem, In section 4, we show that the superiority of
the PDS policy over the conventional scheduling rules is carried to a real system. The major

results of this paper are summarized in Section 5,

2. System Descriptors and Dispatching Rules to Consider for an
Adaptive Scheduling

2.1 System State Descriptors

The set of important system parameters to be considered is based upon past research, and it

includes both system and job characteristics, These are now discussed.

1. Flow Allowance : This measures the lead time permitted to any job, and is, therefore, a
measure of due date tightness. At any point in time #, the (remaining) flow allowance, f; of
job j is expressed as f; = (d; — t)/p, where d; and p; respectively, refer to the due date and
the remaining processing time of j.

2. System Ultilization : From basic queuing theory, it is known that job flow time, and therefore
job tardiness as well, depends upon the system utilization,

3. Contention Factor : The contention factor ¢; of any operation 7 in any job is the number of
alternative machines available for processing it. It is well-known that providing parallel
servers can reduce system congestion and job flow time,

4. Buffer Size : Many FMSs are tightly constrained in terms of the available buffer space b.
When this constraint is binding, and particularly in the presence of job shop-like random ma-
terial flows, various machines in the system are likely to go through phases of blocking and
starving which adversely affect the system performance.

5. Relative Machine Workloads : 1t is well known that bottlenecks impact system performance
critically. Raman et al. (1989) show that relative workload distribution can also impact the
selection of an appropriate scheduling rule. Two measures are used in this study to determine
relative machine workloads,
workload. = W,_, /W, measures the ratio of the maximum workload at any machine to the

average workload. At any instant, these workloads reflect the remaining processing to be

60 Sang Chan Park, Narayan Raman, Michael J. Shaw BERR

done on the available jobs. The other measure workload. is the normalized standard deviation
of relative workload, expressed as the ratio of the standard deviation of individual machine
workloads Wato the average machine workload W.,,,.

6. Machine Homogeneity : This measures the variability in the number of operations that indi-

vidual machines can process.
2.2 Dispatching Rules

Dispatching rules differ in how they assign priority indices to waiting jobs. Rules that have been
found to be effective in previous studies include i) the Earliest Due Date (EDD) rule (Baker and
Bertrand 1982), ii) the Shortest Processing Time (SPT) rule (Baker and Bertrand 1982; Conway
et al. 1967), iii) the Modified Job Due Date (MDD) rule (Baker and Kanet 1983; Raman et al.
1989), and iv) the Modified Operation Due Date (MOD) rule (Baker 1984; Raman et al. 1989).
While a number of other rules have been proposed in the literature, we have selected four rules
that have been found to be effective for the objective of minimizing mean tardiness in the past
(Baker 1984).

3. Constructing a Pattern-Directed Scheduling Approach

Given the set of dispatching rules, and the set of system descriptors, the third element of the
adaptive scheduling policy, namely the set of transformation rules is developed through inductive
learning. In this section, we first review the basic concepts of inductive learning and next recap-

itulate the construction of the ‘adaptive scheduling policy developed in Shaw et al.{1992).
3.1 Inductive Learning

Inductive learning can be defined as the process of inferring the description (that is, the con-
cept) of a class form the description of individual objects of the class (Shaw et al. 1992). A con-
cept to be learned in scheduling, for example, can be the most appropriate dispatching rule (a
class) for a given manufacturing pattern,

Generalization and specialization are essential steps for the inductive learning process. A
generalization of an example is a concept definition which describes a set containing that example.
In other words, if a concept description G is more general that the concept description F, then
the transformation form F to G is called generalization; a transformation form G to F 1is

specialization, For a set of training examples, the generalization process identifies the common

FE13% FI% Adaptive Scheduling in Flexible Manufacturing Systems 61

features of these examples and formulates a concept definition describing these features; the
specialization process on the other hand, helps restrict the coverage of features for a concept de-
scription. Thus, inductive learning can be viewed as the process of making successive iterations of
generalizations and specializations on concept descriptions as observed form examples. This process
continues until an inductive concept description which is consistent with all the training examples
is found. Thus the generalization to specialization relations between concept descriptions provide
the basic structure to guide the search in inductive learning.

The input to an inductive learning algorithm consists of three groups: i) A set of positive and
negative examples (favorable and unfavorable manufacturing system state descriptions for a given
dispatching rule), ii) a set of generalization and other transformation rules, and iii) criteria for
successful inference. Each training example consists of two components — a data case consisting
of a set of attributes, each with an assigned value (manufacturing state descriptions); and the
classification decision made by a domain expert according to the given data case (the best
dispatching rule). The output generated by this inductive learning algorithm is a set of decision
(mapping) rules consisting of inductive concept definition for each of the classes. Learning
programs falling into this category include AQ15 (Michalski 1983), PLS (Rendell 1983) and ID3
(Quinlan 1986). These programs are referred to as similarity-based learning methods,

In this research, we use C4.5(Quinlan 1988) which is a refinement of the ID3 program. The
learning process in C4.5 follows a sequence of specialization steps guide by an information entropy
function for evaluating class membership. The concept description generated by a learning process
can be represented by a decision tree. The nodes of the tree represent conditions set of attribute
values; each branch corresponds to a disjunctive normal form expression. From the previous PDS
experience (Park 1991), the quality of the decision tree we obtained from inductive learning was
relatively satisfactory. Since this paper extends the features and efficacy of dynamic scheduling
capability of PDS, we leave the employed inductive learning algorithm C4.5 untouched., Perhaps,
in subsequent studies, it is worth while to compare the improved performance of PDS using the
knowledge obtained from hybrid of inductive learning and linear or non-linear discriminant analysis

methods generating general hyperplanes.,

3.2 Rule Refinement Process

The rule refinement stage provides a control mechanism for the purpose of Insuring an accept-
able scheduling performance level. This stage monitors the quality of the schedules generated at
the second stage by comparing its performance with those obtained by repeatedly applying each

dispatching rule in D individually, under a variety of scenarios. Higher mean tardiness values

62 Sang Chan Park, Narayan Raman, Michael J. Shaw BB

under PDS indicate deficiencies that need correction. These deficiencies could be caused, for
example, by not considering a large enough set of training examples, As noted earlier, it is diffi-
cult for the set of training examples to be comprehensive in view of the vastness of the system
attribute space. Consequently, the heuristic selection rules imbedded in the r-tree and g-trees are
overgeneralized to some extent. If this results in performance degradation, then these trees need
to be refined.

Formally, let & denote the set of training examples generated until stage #. An example e € ¢
is tuple {c, d} where ¢ € C" C M represents a pattern , C is the set of all patterns investigated
through stage », and d is the dispatching rule found appropriate for ¢. Let R denote the set of
rules imbedded in the r-tree through stage n and let IRl = R, For any rule nn €
R, let & = {C}, d} be the set of supporting training examples, where C} is the set of patterns
considered in these examples and d;is the resulting dispatching rule. The inductive learning algor-
ithm insures that
uCi =C and n C; = {}

Note, however, that as a result of the imbedded generalization in the algorithm, the system attri-
bute state space covered by 7;:is M, such that

Cic M, and v M, =M.

If C; is not a complete representation of M,, then overgeneralization occurs resulting in a predic-
tion error.

The rule refinement procedure identifies all such instances of incomplete representations, and
-augments the decision tree by generating additional rules appropriately. The metric used for rule
refinement is prediction accuracy a that measures the proportion of testing instances in which the
scheduling rule selected by the r-tree turns out be the one that performs the best among all rules
in D when implemented individually. On a random sample of test problems, if a is found to be
less than A, the prespecified target prediction accuracy level, then the learned rules are refined
following a three-step process. First, the deficient rules in the r-tree are identified: next, ad-
ditional training examples are generated in order to specifically address preconditions manifest in
the deficient rules. In the final step, the inductive learning algorithm is employed to update the
tree on the basis of the additional information provided by these examples. The process of gener-
ating the testing instances, evaluating « on these instances, and refining the tree is carried out
iteratively until the desired prediction accuracy is achieved. This method is formally stated below:

a detailed description follows subsequently.

F13% B Adaptive Scheduling in Flexible Manufacturing Systems 63

Algorithm RefineRule

Step 1. Initialization: Set n = 1, R'at the initial decision tree, and C. the patterns considered for
constructing this tree. Go to Step 2,
Step 2. Testing Example Genmeration: a) For each 7€R® determine C}, and P' =

M, —C;. Determine the set of testing patterns 7" C (P! such that IT" | = k.
b) Generate set S" consisting of k testing examples obtained by performing simulation runs on T"
for each dispatching rule in D. Go to Step 3.

Step 3. Termination: a) Determine the prediction accuracy a by using R* on S™
b) IF a<h, THEN stop or go to Step 2 for evaluating next testing set, ELSE, go to Step 4.

Step 4. Iteration: a) For each r,€ R", determine the set of testing patterns W7 < T% for which d,
is not found to be the best dispatching rule. Let N7 = {(W?, d,), - , (Wo d.)} be the corre-
sponding set of testing examples where W} denotes the subset of patterns for which the best
dispatching rule was found to be dy, I = 1, «-ee , Wi, dy#d;, and W, is the number of such
subsets,

b) For each »; € R", generate a set of rules R} using the inductive learning algorithm with & U
N7 as the set of training examples.
c) Identify suspicious regions @ = Cin(v C;, and r, € R}, d,#d).
Step 5. Additional Training Example Generation: Generate set A, consisting of a additional
training examples obtained by performing simulation runs on @ for each dispatching rule in D.
Step 6. Refined Rule Genmeration: Generate a set of rules R} using the inductive learning algor-

ithm with &'V A" as the set of training examples, and go to Step 3.

The testing examples used in Step 2 of this procedure considers the subspace P that is not
covered by the training examples in order to check the occurrence of any incomplete
representations. Such an occurrence is indicated if, for any subspace, the dispatching rule found
dominant in the testing examples is different from the one indicated by the current r-tree, If the
proportion of such occurrence is higher than the acceptable level, this subspace is divided in Step
4 into smaller subspace: each of these smaller subspace being dominated in the testing examples
by a different dispatching rule. The r-tree is accordingly updated, and at the next iteration, the
testing examples used address the possibility of overgeneralization for the new rules added at the
current iteration, The attribute subspace covered by the testing examples consequently reduces at
each iteration, thereby guaranteeing the convergence of this algorithm (also see Politakis and
Weiss 1984, Sammut and Banerji 1986, Tecuci and Kodratoff 1990, and Pazzani et al. 1991).

64 Sang Chan Park, Narayan Raman, Michael J. Shaw wEH$

4. Experimental Study

The PDS system is implemented on VAX 8800 VMS environment, IBM 3090 CMS environment,
and DecStation 5000/200 Ultrix environment. Simulation module was written in SLAM II simu-
lation language. Inductive learning module was written in C (at this moment, learning module is
off-line). Each simulation run and knowledge induction takes less than 2 minutes.

To verify the effectiveness of the PDS approach, we have applied the PDS system in an auto
ancillary company that manufactures fuel delivery systems for passenger cars and light trucks.
This facility produces 41 different products on two identical manufacturing lines. (See Hausman,
Lee and Masri 1987 for a detailed description of the system.) Although the operations are driven
by a monthly production schedule, there are frequent changes in this schedule that result in ex-

pediting some orders and delaying the due dates of other orders.

Buffer BenderA* 2 Buffer BenderB
Cutter ... | .. L . oy : \
REERINSIRRE - |- Buffer BenderA*2 Buffer BenderB*2 -
Buffer || BenderA=2 Buffer [} BenderB*2

Auto
Storage

Retrieval
N - . System
Figure 1. Layout of the Auto Ancillary System

Figure 1 gives the layout of the facility. Each manufacturing line consist of two stages tube cut-
ting and tube forming. The processing time for the tube cutting operation is 36 seconds (The
actual processing time values are suppressed; the numbers shown here are representative of the

actual figures.) for all products at each of the two cutters available on each line. Tube forming is

FEI13R HI1% Adaptive Scheduling in Flexible Manufacturing Systems 65

done on one of 11 identical machines available: the tube forming time depends upon the tube ge-
ometry and it varies from 60 seconds to 105 seconds. Formed tubes are subsequently sent to the
welding stage comprising two welding machines. The welding time is 30 seconds for small tubes
and 42 seconds for large ones,

Depending upon the composition of the orders, the system utilization varies from 30% to 80%. A
range of due date tightness is achieved by allowing flow allowance factor to vary between 2 and
12. The size of buffer available at each bender is 120 while it is virtually unrestricted for cutters
and welders. Machine workloads and the average contention factor at any point in time depend
upon the composition of jobs present in the system at that instant. Based on the processing times
and the past demand data, the workloadw is seen to vary between 1.2 and 3.0, while workloadcy
varies between 0.1 and 0.8. The contention factor for the overall system ranges between 1.9 and
2.6.

For the purpose of this set of experiments, the threshold level of prediction accuracy h was set
to 0.9. The g-tree turns out to be a singleton with §=0.2 performing the best in 20 of 21 training
examples. The r-tree generated initially from 37 training examples comprised 6 selection rules as
shown in Figure 2. When tested on 18 scenarios, it yielded a prediction accuracy « of 77.8%. At
this stage, 12 new training examples were added for the purpose of rule refinement. Augmenting
the r-tree appropriately resulted in 8 selection rules and «=0.944; since the desired prediction ac-

curacy was achieved, no further refinement was carried out. The final r-tree is shown in Figure 3.

Figure 2: Initial r-tree for the Real System

IF (contention-factor, GT.2.139) GO TO 10
IF(workload,,. GT.0.298) GO TO 20

r = SPT;
20: IF(system-utilization. GT.64.074) GO TO 30
r = MDD;
30: IF(flow-allowance. GT.4.0) GO TO 40
r = EDD;
40: r= MDD:;
10: IF(system-utilization, GT. 71.234) GO TO 50
r = MOD:;

50: r = EDD;

66 Sang Chan Park, Narayan Raman, Michael J. Shaw BEN

Figure 3: The r-tree after Rule Refinement for the Real System

IF(contention-factor, GT.2.139) GO TO 10
[F(workload,,. GT.0.252) GO TO 20

r = SPT;
20: IF(flow-allowance. LE.4.0) GO TO 30
r = MDD;
30: [F(flow-allowance. LE.3.0) GO TO 40
r = EDD;
40: IF(system-utilization, GT.64.8) GO TO 50
r = MDD;
50: IF(workload... GT. 0.317) GO TO 60
r= MDD:;
60: r = EDD;
10: IF(system-utilization. GT.71.234) GO TO 70
r = MOD;
70: r = EDD;

Two sets of experiments were conducted to evaluate PDS relative to other scheduling rules. The
first set evaluated PDS under stationary operating conditions. In order to capture the impact of
frequent changes in order due dates, the second set of experiments allowed random shifts in the
mean flow allowance value. The experimental results for these two set are shown in Tables 1 and
2, respectively.

Table 1 confirms the overall superiority of PDS observed in the earlier experiments for the
stationary case. Relatix-/e to the BEST rule, PDS is found to be better in 6 of 21 problems, equal
in 11 problems, and worse in 1 problem. On average, it improves the mean tardiness values
obtained under STP by 16.3%, EDD by 4.6%, MDD by 1.7%, MOD by 20.5%, and BEST by 0.8%.

Table 2 shows that PDS continues to be increasingly superior in the nonstationary case. It is
better than the BEST rule in all 11 cases. Relative to PDS, SPT vyields 4.6% higher than mean
tardiness, and the corresponding figures for EDD, MDD, MOD and BEST are 6.0%, 7.2%, 6.2%
and 1.3%, respectively.

B3k FI% Adaptive Scheduling in Flexible Manufacturing Systems 67

Table 1. The PDS Performance for the Real System: The Stationary Case

PDS SPT EDD MOD MDD BEST D
1.105 1.46 1.806 1.703 1.806 1.46 24.32
1.286 L.79 2.107 2.058 2.107 1.799 2.52
1.19 1.557 1.945 1.865 1.945 L57 23.57
0.9981 1.207 1.582 1.41 1.582 1.207 17.31
0.8601 1.073 1.406 1.281 1.406 L.073 19.84
1.213 1.648 1.983 191 1.983 1.648 26.40
5.062 7.679 5.062 8.006 5.062 5.062 0.00
28.14 29.78 28.14 30.39 28.14 28.14 0.00
5.28 8.308 5.28 8.647 0.28 528 0.00
26.95 28.04 26.95 28.61 26.95 26.95 0.00
5.09% 7.325 5.096 7.814 5.096 5.09% 0.00
25.74 21.6 25.74 28.13 25.74 25.74 0.00
4.751 6.834 4.751 7.073 4.751 4.751 0.00
3.2 45.48 45.82 47.42 38.2 38.2 0.00
21.44 28.61 27.4 29.02 27.44 27.44 0.00
8.43 11.3 8.43 11.74 8.615 8.43 0.00
23.64 25.98 23.64 26.43 23.64 0.00
4.154 5.742 4.1%4 5.898 4.154 4.1 0.00
21.71 24.9 2171 25.3 21.711 21711 0.00
3.764 5.104 3.764 5.242 3.764 3.764 0.00
19.53 24.59 19.47 26.62 19.53 19.47 . =031

**D = (BEST-PDS) /BEST *100

5. Conclusion

This paper develops an adaptive scheduling policy for dynamic manufacturing systems. The main
feature of this policy is that it tailors the dispatching rule to be used at a given point in time to
the prevailing state of the system. The rule selection logic is imbedded in a decision tree that is
generated by applying an inductive learning algorithm on a set of training examples.

Experimental studies dealing with a stationary FMS confirm the superiority of the suggested
PDS approach over the alternative approach that involves the repeated application of a single
dispatching rule previously found in Shaw et al.(1992). In addition, this study shows that, for a
real system, the relative performance improves further when the system is nonstationary. In par-

ticular, PDS performs better when there are frequent disruptions, and when disruptions are caused

68 Sang Chan Park, Narayan Raman, Michael J. Shaw BEHS

Table 2. The PDS Performance for the Real System: The Non-Stationary Case

flow magn inter frequ

allow -itude -val -ency PDS SPT EDD MOD MDD BEST D

-ance
4 2 400 1 1614 16.24 17.47 16.82 17.76 16.24 0.62
4 2 800 1 1821 18.22 19.53 18.83 19.87 18.22 0.05
4 1 400 1 4105 4.436 4.448 4.775 4.448 4.436 7.46
4 2 400 2 1617 16.24 17.62 16.8 17.77 16.24 0.43
4 2 400 4 3552 3.793 4.284 4.031 4.817 3.793 6.35
4 1 400 2 4182 4.432 4.493 4.768 4.493 4432 5.64
4 1 400 4 179 2.157 2.49 2.376 2.49 2.157 16.60
6 4 400 1 0.3461 1.064 03461 0.7161 0.3461 0.3461 0.00
6 4 800 1 17.2 17.63 17.24 17.26 17.2 17.2 0.00
6 4 1600 1 2159 23.39 21.64 23.04 21.59 21.59 0.00
6 3 1600 1 0.8387 1.31 0.8387 1212 0.8387 0838 . 000

by the sudden introduction of urgent jobs, one of the most common sources of disruptions in most
manufacturing systems.

From an operational perspective, the most important characteristics of the PDS approach are its
ability to incorporate the idiosyncratic characteristics of the given system into the dispatching rule
selection process, and its ability to refine itself incrementally on a continuing basis. The first
characteristic highlights the fact that the decision trees are system specific, and emphasize the
need, on a part of the decision maker, to pursue a scheduling policy(such as PDS) instead of
using a single dispatching rulé, The second characteristic insures that decision trees are self
correcting and current. As discussed earlier, all selection rules imbedded in the tree are
overgeneralized to some extent. If this results in inferior performance, then the trees need to be
augmented with additional rules. Furthermore, while the set of system parameters and the set of
dispatching rules considered for generating the training examples need to be comprehensive, they
change over time as new parameters are added, and new dispatching rules become available. The
built-in rule refinement procedure, when used in conjunction with periodic a posteriori comparisons

of PDS with other dispatching rules, insures that the selection rule base is maintained efficiently.

REFERENCES

[1] Baker, K.R., “Sequencing Rules and Due-Date Assignments in a Job Shop,” Management Sci-
ence, Vol, 30, No. 9 (1984), pp. 1093-1104,

B3k HIR Adaptive Scheduling in Flexible Manufacturing Systems 69

[2] Baker, K.R., and J.M. Bertrand, “A Dynamic Priority Rule for Sequencing Against Due
Dates,” Journal of Operations Management, Vol, 3 (1982), pp. 37-42.

[3] Baker, K.R.,, and Kanet, J.J., “Job Shop Scheduling with Modified Due Dates,” Journal of
QOperations Management, Vol. 4, No. 1 (1983), pp. 11-22.

(4] Conway, R.W., Maxwell, W.L., and Miller, L.W., Theory of Scheduling, Addison-Wesley,
Reading, MA, 1967. ’

[5] Hausman, W.H., Lee, H.L., and Masri, S.M., “Dynamic Production Scheduling for Fuel
Sender Manufacturing,” Working Paper, Department of Industrial Engineering Management,
Stanford University, Palo Alto, CA., 1987.

(6] Michalski, R.S., “A Theory and M_ethodology of Inductive Learning,” In R. Michalski, J.
Carbonell, and T. Mitchell, (Eds.), Machine Learning: An Artificial Intelligence Approach,
Tioga, Palo Alto, CA, 1933.

[7] Park, S.C., “Applying Machine Learning to the Design of Decision Support Systems for Intel-
ligent Manufacturing,” Ph. D. Dissertation, Department of Business Administration, Univer-
sity of Illinois-Urbana & Champaign, 1991.

[8] Pazanni, M.]., Brunk, C., and Silverstein, G., “A Knowledge-intensive Approach to Learning
Relational Concepts,” Proceedings of the Eighth International Workshop on Machine Learn-
ing, pp. 432-436, Morgan Kaufmann, San Mateo, CA, 1991.

[9] Politakis, P., and Weiss, S., “Using Empirical Analysis to Refine System Knowledge Bases,”
Artificial Intelligence, Vol. 22 (1984), pp. 23-48.

[10] Quinlan, J.R., “Induction of Decision Trees,” Machine Learning, Vol. 1(1986), pp. 81-106.

(11] Quinlan, J.R., “Decision Trees and Multi-Valued Attributes,” Machine Learning, Vol. 11
(1988), pp. 305-318.

[12] Raman, N., Talbot, F.B., and Rachamadugu, R.V., “Due Date Based Scheduling in a General
Flexible Manufacturing System,” Journal of Operations Management, Vol. 8, No. 2 (1989),
pp. 115-132.

[13] Rendell, L., “A New Basis for State-Space Learning Systems and a Successful Implemen-
tation,” Artificial Intelligence, Vol, 1, No. 2 (1983), pp. 177-226.

[14] Sammut, C., and Banerji, R., “Learning Concepts by Asking Questions,” In R. Michalski, J.
Carbonell, and T. Mitchell, (Eds.), Machine Learning: An Artificial Intelligence Approach,
pp. 167-192, Tioga, Palo Alto, CA, 1983.

[15] Shaw, M.J., Raman, N., and Park, S.C., “Intelligent Scheduling with Machine Learning
Capabilities: The Induction of Scheduling Knowledge,” IIE Transactions, Vol, 24, No. 2
(1992), pp. 156-168.

[16] Tecuci, G., and Kodratoff, Y., “Apprenticeship Learning in Non-homogeneous Domain

70

Sang Chan Park, Narayan Raman, Michael J. Shaw BT

Theories, In Kodratoff, Y., and Michalski. R. S. (Eds.) Machine Learning Vol, III, pp.
514-551, Morgan Kaufmann, San Mateo, CA, 1990.

