High-Order Surface Gradient Coil Design Using Target Field Approach

  • Lee, J.K. (Department of Electronics and Information Engineering, Korea University) ;
  • Yang, Y.J. (Department of Electronics and Information Engineering, Korea University) ;
  • Jeong, S.T. (Department of Information and Communication Engineering, KAIST(Seoul Campus)) ;
  • Choi, H.J. (Department of Electronics and Information Engineering, Korea University) ;
  • Cho, Z.H. (Department of Information and Communication Engineering, KAIST(Seoul Campus)) ;
  • Oh, C.H. (Department of Electronics and Information Engineering, Korea University)
  • 발행 : 1996.03.01

초록

이 논문의 목적은 Target field approach방법을 사용하여 2차원적인 공간선택을 할 수 있는 고차 평면 경사 자계코일(High-Order SGC: High-Order Surface Gradient Coil)을 설계하는 것이다. 지금까지 쓰이던 원통형의 고차경사자제코일을 이용한 2차원적 원형 선택방법은 한 개의 RF Pulse로 2차원적인 공간 선택을 할 수 있는 장점이 있었으나 선택되어지는 체적의 지름이 6 ~ 8cm로 너무 크다는 단점이 있었다. 이 논문에서는 이와 같은 단점을 극복하기 위해 영상을 얻고자하는 부분에 코일을 좀 더 가까이 붙일 수 있어서 적은 전력으로 선택되어지는 체적의 지름을 1 ~ 4cm까지 줄일 수 있는 표면 고차자계코일을 Target field approach방법을 이용하여 설계하였으며 Phantom과 인체영상을 통해 제작된 코일의 성능을 확인해 보았다. 이전의 Field component 방법을 이용하여 설계한 코일에 의해서 선택되어지는 체적은 타원에 가까운 모양이 되었으나, Target field approach 방법을 이용하여 설계한 코일에 의해서 선택되어지는 체적은 이상적인 원에 가까운 모양이 되었다.

The purpose of this paper is to design high-order (or radial) surface gradient coil (SGC), which can provide multi-dimensional spatial selection. Although the spatial Selection with High-Order gradienT (SHOT) can provide a 2-D selection with only one selective RF pulse, the high-order gradient pro- duced by conventional cylindrical-shape coils has not been clinically useful due to the large selection size caused by the limited radial gradient intensity. However, by using the proposed high-order SGCs located near the imaging region, the size of volume selection can be reduced to a clinically useflll size of 1-2 cm in diameter by applying stronger radial gradient field with much less gradient driving power. So far radial SGCs have been designed by using the field component method and may cause distortion in the selection shapes. In this paper, by using the target field approach for the coil design, selected volumes became almost circular. A 40 cm-by-40 cm $z^2$_surface gradient coil has been designed and implemented by using the target field approach. Phantom and volunteer studies have been performed Experimental results using spatially localized MRI show good agreement to the theoretically predicted behavior.

키워드

참고문헌

  1. Magn. Reson. Med v.18 no.1 New spatial localization method using pulsed high-order field fradients (SHOT: Selection with High-Order gradienT) C.H. Oh;S.K. Hilal;Z.H. Cho
  2. Proc. SMRM VIII Spatial selection using pulsed high-order magnetic field gradients C.H. Oh;S.K. Hilal;G. Johnson
  3. Magn. Reson.Med v.24 no.1 Radial scanning technique for volume selective 31P spectroscopy C.Y. Rim;J.B. Ra;Z.H. Cho
  4. Proc. SMR II Selection with Higl-Order gradienT(SHOT) using Surface Gradient Coils(SGC) C.H. Oh;J.K. Lee;Y.J. Yang;Y. Yi;Z.H. Cho
  5. US Patent # 5122748 Method and apparatus for spatial localization of magnetic resonance signals C.H. Oh;S.K. Hilal
  6. J. Phys. D: Appl. Phys v.19 A target field approach to optimal coil design R. Turner
  7. Magn. Reson. Med v.1 Magnet field profiling: analysis and correcting coil design F. Romeo;D. I. Hoult
  8. Rev. Sci. Instrum v.62 no.11 Insertable biplanar gradient coils for magnetic resonance imaging M.A. Martens;L.S. Pertopoulos;R.W. Brown
  9. J. Phys. E: Sci. Instrum v.19 Passive screening of switched magnetic field gradients R. Turner;R.M. Bowley
  10. J. Magn.Reson v.72 Multishield active magnetic screening of coil structures in NMR P. Mansfield;B. Chapman