SIOIHFE HEIAFHE 210 SSHQ MF LI LD2IS 1207

slo] ¥ 7B HE|AFHE 93 8459
& WA E3)E

i el

2

e AlHFE T2 AT AHFHA TS A 45 A FxYEL

st

—

Qr

gt AR 2uEE A

2 HEE SolHFHA dAE =HFoz 4YsE 719 7|2E F2 k. 232 Aty ¢
A%< Guptas] 232 53 vlmEigivh e ¥E 43 A 248 4L Guptad] QA EH 22, BE B
%78 ALE Guptas] F32)F wek 0 A2, T L YA AL AA2F Fag Ao WA AsE Gupla

o 23T B AL ¢ 5 AN

An Efficient Mutual Exclusion Algorithm

for Hypercube Multicomputers

Ihn Han Bae!

ABSTRACT

We present an elficient decentralized, symmetric mutual exclusion algorithm for the hypercube architecture.
The algorithm is based on the technique which embeds a mesh into a hypercube. We compare the performance
of our algorithm with that of Gupta et al’s algorithm. As a result of performance comparison, the minimum
round-trip delay is equal to that of Gupta et al's algorithm, the average blocking delay is a little longer than
that of Gupta et al.’s algorithm, and the number of messages per access to critical resource is fewer than that of

Gupta et al.’s algorithm,

1. Introduction

In the recent years, numerous topologies have been
proposed for interconnecting nodes in a multiproces-

sor system. Among them, the hypercube architecture

# This work are supported by Catholic University of Taegu-
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has earned wide acceptance in both SIMD and MIMD
configurations because of its simple, yet rich top-
ology. Efficient solutions for synchronization problems
are critical to the performance of many algorithms on
MIMD machines. In this paper, we address the prob-
lem of mutual exclusion on a hypercube.

The mutual exclusion problem is a well-known and
findamental problem in operating systems. The prob-
lem is to guarantee mutually exclusive access to a

critical section among a set of competing independent
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processes. There are several solutions 1o this problem
in distributed systems. One of the first distribuled
mulual cxclusion algorithms was presented in [3]. Ri-
cart and Agrawala improved Lamport’s solution by
employing deferred grants [6]. Subsequently, Maeka-
wa optimized the number of messages required by
Ricart and Agrawala’s algorithm to achieve mutual
exclusion [4]. Recently, Gupta et al. proposed a
decentralized, symmetric mutunal exclusion algorithm,
callcd Selective Broadcast, that makes full use of the
hypercube architecture [1].

In this paper, we present an elficient decentralized,
symmetric mutual exclusion algorithm for the hyper-
cube archileclure. We compare the performance of
our algorithm with that of Gupta et al’s mutual ex-
clusion algorithm with respect to the minimum round-
trip dealy, the average blocking delay, and the num-
ber of messages per access Lo critical resource.

The remainder of this paper is organized as follows
:Section 2 describes the notation and terminology of
the hypercube architecture and introduces Gupta et
al.’s mutual exclusion algorithm. Section 3 provides
an outline of our mutual exclusion algorithm for the
hypercube architecture. In Section 4, we calculate the
minimum round-trip delay, the average blocking de-
lay, and the number of messages per access to the
critical resource. Finally, in section 5 we provide con-

cluding remarks.
2. Preliminaries and Previous Work

2.1 Preliminaries
We employ ihe notation and definitions presented
in [S).
Definition: An n-dimensional hypercube, Qn, is de-
fined recursively as follows:
{1)Qqu is trivial graph with a single node, and
(2)Qn=K2XQn-1, where K, is a complete graph
with two nodes, and X is the product operation
on graphs.

An n-dimensional hypercube consists of 2" nodes.

Each node is connected 1o one another node along
cach dimension. We number dimenstons as d., ..., da,
di. The address of a nodec in Q, is uniquely represent-
ed by an n-bit binary number (baba-1... 1) where the
i-th bit, by, corresponds 1o the coordinale ol the node
along dimension di.

The number of bits differing between the addresses
of two nodes provides the distance between these
nodes. It is straightforward lo verify that lwo neigh-
boring nodes differ in their addresses in exactly one bit
and that the bit correponds to the dimension of the
edge joining them. Furthermore, the maximum dis-
tance between any two nodes is n, the total number
of bits in an address. By inverting all n bits in a ad-
dress of a node, one oblains the address of the node
at distance n from it. Subcubes of an n-cube system
are denoted by ternary strings in {0, 1, *}, where * is
the Don’t Care bit which can be either 0’s or 1's.

Each node j has 2% 2" sets associated with it pred;
(i) and sucgi(t), i€11, 2, ..., 2°}. Let the distance be-
tween nodes i and j be r. predfi) is the set of those
neighbors of j that are closer to i by a distance 1 (j.e.,
a distance r—1 from i). In contrast, succ(i) is the set
of those neighbors of j that are further away from i
by a distance 1 (i.e., a distance r 41 from i). Note

that the cardinalities of pred;(i) and suce;(i) sets are |

T
pred;(i)
I J
v
!y

[ succj(i)

(Fig. 1) Pred;(i) and succi(i) sets



predi(i}| =r and |succ(i)] =n—r. For all i, predi(i)=¢
and succ(i) contains all n neighbors of node i.

Consider two nodes 00000 and 11000 in Qs. The di-
slance belween 00000 and 11000 is 2. In nodes 00000
and 11000, bit bs and b, are dissimilar bits, and bit ba,
bz, and b, are similar bits. Node 11000 is joined to
01000 and 10000 along ds and ds, and to nodes 11100,
11010, and 11001 along ds, d2, and d;, respectively.
Hence, pred;1000(00000) = {01000, 10000} and succiiomn
(00000)={11100, 11010, 11001}. Finally, lprediio
(00000} [=2, and |succiie00(00000) |=5—-2=3,

2.2 Previous Work

Gupta et al. proposed a decentralized, symmetric
mutual exclusion algorithm, called Selective Broadcast,
for the hypercube architecture [1] that is described be-
low with three parts:

Part 1:[What the initiating node does]

Node i broadcasts a REQUEST message to only

those succi(i) nodes that are reachable along the di-
mensions dn, dn—1, ..., dm, Where m=[-—72i l-

Part 2:[What the iniermediate nodes do]

When an intermediate node j at distance r from
node i, 1 <r<m, receives its (only) REQUEST mess-
age along dimension, say dmi, it forwards the mess-
age to only those suceii) nodes that are reachable
along dimensions dmin-1, dmin—2, -.-, dn—r.

Part 3:[When does the algorithm terminate]

The forwarding of messages terminates at modes
that are a distance m from node i.

Let §; denote the set of all nodes within a distance of
[%] of node i, and S;" denote the set of nodes reached
by the Selective Broadcasl. The cardinality of the set
5/, denoted by 18;"], is given by IS" ={ # +1 ). Sim-

n
[3]
ilarly, the superscript * is attached to the successor

and predecessor sets thal are actually used in the Sele-
ctive Broadcast algorithm.

BIOIMTE BEIHFEE YIS ZRHP 2 giF LD2IZ 1209

The Selective Broadcast slartegy provides a unique
way of traveling from node i to any recipient node j
in 5. A REQUEST message to node j travels only
along the dimensions associated with the dissimilar

bits between the addresses of i and j, and it starts

':'élcng the highest numbered dimension and then suc-

cessively traverses the lower numbered dimensions.
#n
Once a node k at distance [3] receives a REQUEST

message, it decides whether it can grant the resource
lo node i. If it can, it sends a GRANT message to its
predy (i) node. An intermediate node k waits until it
receives a GRANT message from every node in its
succy (i) set, and if it can grant the resource to node i,
then it will send a GRANT message to its predi’()
node. This backward propagation is performed at all
intermediate nodes in 5;. In this way, GRANT mes-
sages backirack the path of the REQUEST messages.
Once node i receives a GRANT message from every
node in its suce;’(i) set, it knows that it has the necess-
ary permission from all the nodes in its subset S;" and
proceeds to access the cntical resource. When node i
no longer needs the resource, it broadcasts a RE-
LEASE message to every node in 5;. The RELEASE
messages follow the same paths as the REQUEST
messages.

Figure 2 presents an example of a Selective Broad-
cast when node 0000 in a 4-dimensional hypercube Q,
wants fo access the common resource. We assume
that it is the only node vying for the resource. Node
0000 starts the broadcast by sending a REQUEST
message lo each of the three nodes {1000, 0100, 0010}
along dimensions di, d3, and d;, respectively. Be-
cause node 1000 receives the REQUEST message
along ds, it propagates the REQUEST message along
ds. dz, and d, to nodes 1100, 1010, and 1001, respect-
ively. Node 0100 forwards a REQUEST message to
nodes 0110 and 0101 along dimensions d> and d; and
node 0010 sends the REQUEST message to node
0011 along the only permissible dimension d;. This
completes the forwarding process.
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GRANT messages backtrack the paths followed by
REQUEST messages. Since a node j reccives a RE-
QUEST message from only one node, it sends only
one GRANT message to that same node.

0000

1000 0100 0010 ® 0001

dz dl

L] - * L J
1100 1010 1001 0110 0101 0011

(Fig. 2) The example of the REQUESTs generated in the
Selective Broadcast [1)-

The performance of Selective Broadcast algorithm
is as follows [1];

- Minimum Round-trip Delay
n
=2[=1.
D=2] 2]
- Average Blocking Delay

14 [ﬁ
(T 4] 2
dmi d

1
N-1

n
B= +2{3]

(N—[n+11)],

n
[‘5]

where N is the number of nodes in the n-dimens-
ional hypercube.
+ Number of Messages per Access to Critical Resource

(Din the minimum case (no contention)

5 [i]-i-d
NM;=Y (3d#*| 2
d=1

d

(@ in the maximum case (contention al each node in

SO
3 (Z]+d
NMi= Y (Gl—1+d +3%*| 2 )
d=1 2 d

where NM; denotes the number of messages gener-

ated while node 1 access to one resource.

3. Proposed Mutual Exclusion Algorithm

The proposed mutual exclusion algorithm uses the
technique of embedding a mesh into a hypercube. We
first explain how a mesh is embedded in a hypercube

and then explain our mutual exclusion algorithm.

3.1 Embedding a Mesh into a Hypercube
Embedding a mesh into a hypercube is a natural
extension of embedding a ring into a hypercube. We
can embed a 27X 25 wraparound mesh into a 2 *>-pro-
cessor hypercube by mapping processor (i, j) of the
mesh onto processor G(i, NIG(,s) of the hypercube,
where [ denotes concatenation of the two Gray codes.
Note that immediate neighbors in the mesh are map-
ped to hypercube processors whose processor labels
differ in exactly one bit position. Therefore, this map-
ping has a dilation of one and a congestion of one [2].
For example, consider embedding a 4 X4 mesh into
an sixteen-processor hypercube. The values of both r
and s are two. Processor (i, j) of the mesh is mapped
to processor G, DIG(, 2) of the hypercube. There-
fore, processor (0, 0) of the mesh is mapped to pro-
cessor (0000} of the hypercube. Similarly, processor
{0, 1) of the mesh is mapped to processor (0001) of
the hypercube, and so on. Figure 3 illustrates embed-
ding of a 4X4 mesh into a 4-dimensional hypercube.
This mapping of a mesh into a hypercube has the
following useful properties [2]. All processors in the
same row of the mesh are mapped to hypercube pro-

cessors whose labels have identical r most significant
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(Fig. 3) Mapping a 44 mesh {o processors in a four-di-
mensional hypercube.

bits. Fixing any r bits in the processor label of an (r +
$)-dimensional hypercube yields a subcube of dimen-
sion s with 2° processors. Since cach mesh processor is
mapped onto a unique processor in the hypercube,
and each row in the mesh has 2 processors, every
row in the mesh is mapped to a distinct subcube in
the hypercube. Similarly, each column in the mesh is

mapped to a distinct subcube in the hypercube.

3.2 The Mutual Exclusion Algorithm

In the mutual exclusion algorithm, the node which
requests a critical resource broadcasts REQUEST mes-
sages 1o all the nodes in the same row and the same
column as the requesting node in the mesh. In the 4%
4 mesh of Figure 3, one set of nodes in the same row
as node (asasaza;) is represented {ajaz**}, the other
set of nodes in the same column as node (a4azazar) is
represented {**a,a;}. If a node (asaza>ai) in the 4-

dimensional hypercube requests a critical resource, it
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broadcasts REQUEST messages lo lhose nodes in the
sets of {asaz**}and {**aza,}. Therefore, the request
set of the node (asasaza,), S(asazazar), is defined {ay
a;*#*, %% 1,2,}. For example, suppose two nodes (1111)
and (0000) want to access the critical resource and,
consequently, the node (1111) broadecasts REQUEST
messages to those nodes in the set {11%%, ** 11} (ie.,
{(1100), (1101), (1110), (1111), (0011), (0111), (1011)}),
and the node (0000) broadcasts REQUEST messages
to those nodes in the set {00%=*, %00} (i.e., {(0000),
(0001), (0010), (0011), (0100), (1000), (1100)}). There
exist two common nodes (1100) and (0011) between
{11%%, %11} and {00%%, *%00}. If we define our
scheme formally, in the n-dimensional hypercube, Qu,
the node (apan—i...a2a;) which requests critical re-
source broadeasts REQUEST messages to all the nodes
in the request set S(@n@n~1...d2d1), Where S(@n @

aZal)z{an---al_'z'] P O RS ---*a‘%[---al}- The card-

inality of the set S(@nln-1...@2@1), |S(@nnmi . ..a)|

13]1+1

=27 1.

Similarly to Gupta et al. s algorithm, we reproduce
the skeleton of the algorithm in [7]. Each node (a,
An-1...8241) In Q, executes the following abstract pro-
tocol for accessing and releasing the resource:

- REQUEST :Broadcast a timestamped REQUEST
message to every node in S(@n@n-1 ... @21). Wait for

a GRANT message from every node in S(@n@y— ...

).

- ACCESS : Access the critical resource.
+ RELEASE : Broadcast a RELEASE message to every
node in S(@ran—1...22a1).

The modified algorithm [7] to recover from dead-
locks is that the process will know that the system has
entered an unsafe state if, after sending a GRANT to
a process, it recevies a request from a higher priority
process. When this happens, steps can be taken to re-
voke the GRANT and recover from a deadlock if it
has.occurred. The modified algorithm introduces three
new message types, FAIL, INQUIRE, and YIELD to

recover from deadlock situations. A process waiting
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for GRANT messages may now cancel a GRANT
thal has been received and wait for another one, be-
fore entering the critical section.

Both node (aya,—-;...a2a:) and node {baba—1...baby)
cannot be granted their request simultancously, be-
cause of the following two observations:

- Since each request set contains all the nodes in the
same row and the same column of the requesting
node in the mesh systemn, there will be at least two
common nodes between S(2,2n—;...224;) and S$(&,
b1 . 02 b)).

- Since a node can grant permission to only one node
at a time, any common node can act as an arbi-
trator and not send grants to both node (anan_; ...
az4;) and node (baba-;...baby).

4, Performance Comparison

In this section, we present three popular performance
metrics- minimum round-trip delay, average blocking
delay, and the number of messages per access and
employ them to compare our algorithm with Gupta et
al’s algorithm. We could find that the minimum
round-trip delay is equal to that of Gupta et al.’s al-
gorithm, the average blocking delay is a little longer
than that of Gupta et al’s algorithn, and the mumber
of messages per access to critical resource is fewer
than that of Gupta et al’s algorithm.

4.1 Minimum Round-Trip Delay

The minimum round-trip delay for node i, D;, me-
asures the minimum waiting time of node i from the
moment it has requested the resource and before it
can be granted the access. Of course, D; is minimized
when there is no contention for the resource. It is cal-
led the round-trip delay because it measures the time
it takes for REQUESTSs to reach all nodes in the re-
quest set 5;° and for all GRANTS to return to node i.

We define the minimum round-trip delay for an al-
gorithm, D, to be the maximum of all D;’s, We define
dmax to refer to the distance between 1 and the farthest

)
node in ;. We know that deux is [7] for our algor-

ithra because S(@nlq—1...Ga1) i8 {(a,,.,.al%wrl * k),
(* e am .4} A node i can send REQUESTs to

all nodes within time dmax . Because GRANTs from the

farthest nodes will take dpax amount of time to return

n
1o node i, we obtain the simple result, D=2 [? ).

4.2 Average Blocking Delay

The blocking delay, By, is defined for every pair of
nodes (i, j) and measures the maximum number of
sequential messages required after node j relinquishes
the resource and before node i can access if;nodeiis
supposcd to be blocked while waiting for node j to re-
linquish the resource. The average blocking de!ay for
a node 1, B; is defined as the average of B, over all
j€ Qn, j7*1. Similarly, the average blocking delay for
an algorithm, B, is defined as the average of B; over
allieQ,.

It is easy 1o show that By=d for a node j€S8;” where
d is a distance between i and j since after j relinqui-
shes the resource, it takes only d units of lime for a
GRANT to travel from j to i. On the other hand, B;:;

=2% [_nf ] for node j §;. Since our algorithm visits all

n
2% 2 nodes that are at distance of d from i, we
d

obtain
;@ Z, )
24y
B=—— X 24| 2 | 4 Zjv—27"" 4]
- de1 d 2

where N is the number of nodes in the n-dimen-
sional hypercube. B; will be the same for all i. There-
fore B=B;.
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(Fig. 4) Comparison of blocking delay for Gupta et al's
algorithm with our algorithm

4.3 Number of Messages per Access to Critical
Resource

Let NM; denote the number of messages generated
during one resource access by node i. Obviously, NM;
will be minimum when there is no contention, bul it
will be maximized when there is contention at each
node in §;.

The minimum NM; is achieved in the absence of
any contention and corresponds to the shortest mess-
age exchange of (REQUEST, GRANT, RELEASE)
of the three messages between 1 and all keS8, k+#i.
Since in our algorithm, a node at distance d ex-
changes one REQUEST, one GRANT, and one RE-
LEASE with the node i, a node at distance d will
contribute three messages to Min NM;.

The maximum NMi occurs in the presence of con-
tention at each node k in 5", k#1, and it corresponds
to the most exchange of seven messages (REQUEST,
INQUIRE, YIELD, new GRANT, FAIL, GRANT,
RELEASE).

Since our algorithm started at node i traverses all

n
=

2%| 2 | nodes at distance d from i,
d
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n
2

n
=1
Min NMi= Y. (3d+2%{ 2 |) and
d=1
d

15
Max NM;= Y., (1d+2%

dw]

N
EN
d

3000

—e—  Gupta(Min)
—+— Gupta(Max)
——=—=  Qur({Min)
—— Qur{Max)
2000 4

NMI

1000 4

(Fig. 5) Comparison of Min NM; and Max NM, for Gupta
et al.'s algortihm with our algorithm

5. Conclusion

We have presented an efficient decentralized, sym-
metric mutual exclusion algorithm for the hypercube ar-
chitecture. Qur algorithm has used the technique that
can be embedded a mesh into a hypercube. For the per-
formance of our algorithm, first the minimum round-
trip delay is equal to that of Gupta et al.’s algorithm,
secondly the average blocking delay is a little longer
than that of Gupta et al.’s algorithm, thirdly the num-

ber of messages per access to critical resource is fewer

than that of Gupta et al.’s algorithm. A node (@nan-

...aza;), once it know the dimension of the hypercube,

can locally compute the sets of (a,....al%l_,_l % %) and

k.. a2 -..ay) to carry out the broadcast. Similarly to



214 SREERACEE =X HIB M5z=(96.9)

Gupta et al’s algorithms, our algorithm is best suited

for real-time applications as well as easy to implement.
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