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The QCE: A Binding Environment for Distributed
Memory Multiprocessors

Yong-Doo Lee' - Hie-Cheol Kim'' - Soo-Hoan Chae '

ABSTRACT

In the OR-parallel execution of logic programs, binding environments have a critical impact on the perform-
ance. Particularly, this is true for distributed execution on parallel systems with a non-single address space. The
reason is that in such systems, the remote accesses across processing clements deteriorate the performance. To
solve this problem, some binding methods were previously proposed specifically for a non-single address space.
However, compared with the binding methods for a single address space, they are far less cfficient due to the
overhead of mewly introduced operations such as environment closing and back-unification. In this paper, we
propose a new binding method geared particularly foward achitectures with a non-single address space. The
proposed binding environment is a hybrid that combines both the binding methods for a single address space
and those for a non-single address space. It acomplishes high efficiency by making closing operations unnecess-
ary both at unification and at back-unification, while maintining the restricted accesses.

1. Introduction Hom clauses has become a prominent programming
paradigm for symbolic computing. Indeed, PROLOG
Logic programming based on universally quantified is one of the most popular logic programming langu- -
ages because of its many advantages in terms of ease

T)‘f 3 :;11 gg;g:ﬂ{g }?fﬂ%%gﬂi— ‘?.11-‘1"‘ of programming and declarative semantics. As apli-
1 4 o Q:83%3d i ARUNE UG Y cations often demand high computing resources due
T E=RAS19969 79 49, AAPEE 1996 84 309 to their huge computation, many researches(l, 2, 3, 4,
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10] have been conducted to develop parailel execution
techniques.

Distributed implementation of logic programs suf-
fers from severe inefficiency. Moreover, the inef-
ficlency becomes higher when the system memory is
organized in a non-single address space. According to
previous researches, the inference mechanism of logic
languages, particularly the environment stacking and
the runtime traversal of a parallel search tree is the
main source of the efficiency.

In the OR-parallel execution of logic programs, all
descendant nodes being executed concurrently share
the parent’s environment. That means each descend-
ant must have a virtual copy of the parent’s environ-
ment to avoid the conflict with bindings made by the
other descendants. In this respect, binding methods
have a critical impact on the performance of OR-par-
allel execution of logic languages. Particularly, this is
applied more seriously to distributed execution, be-
cause the accesses across processing elements (PEs)
would usnally lower system utilization.

A number of binding methods[1, 2, 4, 9], which we
will call shared binding environments, have been de-
veloped for the parallel execution on shared memory
machines. Specific for distributed implementations of
logic programs, some other binding methods have
been designed[3, 6, 7]. These will be referred to as
closed binding enviromments because they restrict
(close) variable accesses within each processing el-
ement. These closed binding methods achieve the re-
stricted accesses through some new operations such as
environment closing and back unification. However,
the operations nsually incur intolerable overhead par-
ticularly when application programs have large am-
ount of complex terms. In consequence, under the
closed binding methods, the performance of a thread
of tasks, which will be scheduled within a processing
element (PE), is quite lower than under shared bind-
ing methods.

The central thesis of this paper is that with respect
to a thread of tasks scheduled within a PE, even the

binding methods for distributed implementations
should still retain the efficiency of shared binding me-
thods. To validate the thesis, we analyze the main so-
urces of the inefficiency of the existent closed binding
metﬁods. Then, we propose a new binding method,
which we will call the quasi-closed environment
(QCE). As a hybrid of shared and closed binding
methods, the QCE is aimed at both maintaining the
efficiency of the shared binding method and archiving
the restricted assess of closed binding methods.

The rest of this paper is organized as follows. In
section 2, we will present the analysis of the closed
binding methods in terms of the overhead. In section
3, we will discuss the proposed binding method with
focus on the principles and the implementation te-
chniques. In section 4, a qualitative performance com-
parison will be made between the proposed binding
method and other relevant closed binding methods.

Finally, a concluding remark is offered in section 5.
2. Analysis of Closed Binding Methods

Stated earlier, binding methods for distributed im-
plementation are organized to restrict variable ac-
cesses always within local environments on a PE, be-
cause the remote accesses in shared memory models
are too expensive. The variable importation method
[7] employs back-unification along with head unifi-
cation, using import vectors. The closed environment
{3], a successor to the variable importation, brings out
efficient memory usage by using closing operations
without import vectors. In [6], the closed environment
is optimized to avoid copying of grounded terms. In
these binding environments, for every OR-task, its en-
vironment is closed against some other levels of the
tree. This environment closing is achieved through the
closing operation performed both at unification and at
back-unification. Its precise algorithm is found in [3].

From the implementation perspective, we examine
the closing algorithm [3] and identify the following

three main sources of overheads: 1) For environment
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(Fig. 1) An example of the closed environment

closing, the current environment should be scanned to
check those references that reach outside the environ-

ment, That means all the complex terms reachable -

from the environment must be scanned. 2)When a
variable in a working frame has a reference binding
to a varable in a reference frame, the variable must
be imported into the working frame. The importation
entails the adjustment of the variable for making it
refer to the newly created slot and also requires an
extension of the working frame at runtime. 3)Pro-
vided a varable is included in a complex term, the
term must be copied because of the single assignment
property of Proroc vatiables.

Fig. 1 depicts the results of unification and en-
vironment closing for a sequence of OR-tasks, where
a reference is expressed simply with an arrow. It also
shows the contents of environment frames. In the fig-
ure, a variable is contained in complex term f and is
represented by the first slot. As a result of environ-
ment closing, the first slot is updated three times. In
¢ach update, it refers to a slot in three different
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frames. Because the offset values in those frames are
not the same, ie, 2, 3 and 2, complex term f is
copicd three times. '

The structure copying problem in the above case is
similar to the case of functional programs. However,
the structure copying problem in logic programs is
quite severe. In the forward processing, once a
non-ground structure is passed to a body goal, the
structure should be copied for all the OR-modes
spawned by the body goal. For the search path of
each OR-mode, the structure must be repeatedly
copied along the search path until the structure
becomes grounded. As an example, suppose that the
average number of OR-nodes for each body goal in
the OR-task tree is # and a structure created in an
OR-node % becomes ground after being passed to an
OR-node separated from OR-node % by 7 levels. In
this case, the total number of structure copying will
be O(2™).

In addition to the structure copying, another draw-
back of closed binding methods is that the closing op-
eration is applied to unification and back-unification
uniformly in every OR-task. As a matter of fact, the
dosing operations are not necessary for the intra-PE
task threads because the environments for those tasks
will always stay local to the PE;therefore, the over-
head cansed from the closing operations cannot be
justified on an intra-PE thread.

The concept of the closed binding environment is
valuable for distributed implementation of logic pro-
grams. However, the above analysis indicates that the
dosed binding environment is not a suitable option
for the distributed implementation of logic programs
due to its unrealistic overhead.

3. The Quasi-Closed Environment(QCE)

This section presents the idea behind the QCE me-
thod and also addresses a variety of implementation

issues.
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3.1 Principles

The problem of complex term copying originates
from the variable naming convention. In non-closed
binding environments, a variable has a global name.
For example, parallel models established on top of
the Warren Abstract Machine WAMI8] utilize mem-
ory addresses for variable names. Under this global
naming convention, it is not necessary to rename a
variable when a structure containing the variable is
passed to an OR-node;that is, it is not necessary to
copy the structure. In the closed binding environment,
every variable has a name scoped locally within the
environment of a task. In this case, 2 complex term
containing a variable must be copied, because a van-
able must be renamed whenever the complex ferm is
passed between tasks. The goal of the Quasi-Closed
Environment (QCE) is to achieve restricted accesses
of the closed environment, while maintaining the ef-
ficiency of the non-closed binding methods. The main
idea behind the QCE is to employ both the global
and the local naming convention. For this reason,
variables are divided into two classes;if a variable
appears in arguments of complex terms, it is defined
as an instance variable ; otherwise, as a frame variable.
Given this classification, frame variables are named
according to the local naming convention, whereas in-
stance variables are mamed according to the global
naming convention.

Because all the variables contained in structures
have global names, the QCE method avoids structure
copying in an intra-PE task thread. Moreover, it does
not need explicit environment closing at wunification
with the help of a tagging scheme to be discussed
shortly.

However, two new issues arise in the QCE method:
1) the management of instance variables:especially
the detection of instance variables. 2) the manage-
ment of awuxiliary structures for storing the bindings
of instance variables.

3.2 Management of Frame Variables

For frame variables, the QCE maintains closed en-
vironments without explicit closing. To do that, unifi-
cation is performed such that the closing effect is
obtained for frame variables. This is achieved by a
reference binding made always from variables in a
reference environment to those in a working environ-
ment, To support such reference bindings, variables
are marked with tags indicating their environments.
When a variable is bound with a reference to another
variable, the tag is compared to decide the direction.
For this, an explicit scan of the whole environment
including complex terms is required at every goal acti-
vation. In the QCE, it is sufficient to change the tags
of variables only in the working frame since the var-
iables in complex terms are managed separately. The
management of frame variables are thus summarized
as follows. (i) Each variables in a working environ-
ment is created with a tag indicating the frame. (i) At
unification, any reference binding between variables
uses the tags to decide the direction of the reference.
(iii) When variables in the working environment frame
of a task is passed to its child task, their tags are
adjusted during argument generation.

3.3 Management of Instance Variables

Being globally named, instance variables have un-
ique names both inside and outside of a task. A bind-
ing made for an instance variable in a task is stored
in an auxiliary data structure as it is done in general
non-closed binding methods. However, two issues, the
detection of instance variables and the management
of auxiliary data structures, must be clearly addressed.

Naming instance Variables

In Proros, complex terms are created on the heap
either 1} when arguments are generated for the acti-
vation of a goal that has a complex terms at its argu-.
ments, or 2) when a complex term appearing at a
clause head is bound to a variable during unification.
Both cases use a common algorithm to detect and
name the instance variables.



BUILD-STRUCTURE (HP. E. H, A, name, arity, Flag)
/* instance vaciable detecuon and naming during construction of a structure */

1:  begin

i P = HP;

3 H{ptr] = namc;

4 pir=:pir+ 1;

5: Hiptr] =: ariry;

6: pr=pmr+1;

T tor all argument Ali]

& begin

9: Dereference Ali] to aterm T,

10: il Flag = wue

1: begin

12: if tag(T) = unbound local variable
13: begin .
14: Get name SAi forthe T
15: E[T] =: $AL

16: H[ptr] = SAi;

17: end

18: else

19: Hipr]=: T:

20: end

2 dse

2 Hipr] = T:

23: pr=pr+ 15

24: HP = ptr;

25 end

26: end.

(Fig. 2) fhe extended algorithm to create complex

From the definition in the QCE, the variables in-
side complex terms are instance variables. We detect
instance variables when complex terms are created.
With this approach, we avoid scanning of complex
terms at every task creation. The algorithm to create
complex terms is shown in (Fig. 2).

Given the execution of a logic program based on
the procedural interpretation, by induction on the
depth 7 of the search tree, we can verify the com-
pleteness of the detection algorithm. Initially, at the
root of the search tree for a program P, every in-
stance variable is detected during argument gener-
ation ; therefore, every variable included in arguments
to the node of the 1? depth is adequately named. Sup-
pose that all the instance variables in the node of the
(n—1Y* depth were completely detected and thus ap-
propriately named. On a node of the #** depth, we
can detect during argument generation all the un-
bound local variables belonging to arguments that are
complex terms. By doing it, we do not need to scan
complex terms to name the instance variables here

since by induction hypothesis, the variables are alre-
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ady named. Therefore, all variables in complex terms

passed to (z +1)* are appropriately named.

Management of Auxiliary Structures

At forward execution, the pointer to the parent’s
auxiliary structure is passed as a part of an input en-
vironment. Hence, every reference to a binding of an
instance variable is performed locally in the task. At
backward execntion, the pointer to a child auxiliary
structure carrying bindings of instance variables is
passed back to the parent task as a part of the output
environment. In the QCE, a hash table, shown in
(Fig- 3(@)), is employed as the auxiliary data struc-
ture. As the duplication is always performed in a
single address space, we optimize the duplication by
just providing a copy of a head as shown in (Fig- 3
(b)). Enquening an element to the hash is shown in

(Fig. 3(c).
g g (3-13
g &, \op-E-03y
{a) Original hash (b Duplication of 2 hash (G).Qf.wnrcw ing an entry

(Fig. 3) Operation on the auxiliary store

3.4 Back-unification

Back-unification done wpon the successful com-
pletion of a task consists of simple retrievals of bind-
ings, since no explicit closing is performed in our
method. That means the binding of a variable in the
parent frame is retrieved from those of local variables
if exist, whereas tags of the variable is changed from
reference to variable if the binding does not exist.

3.5 An Example of the QCE

Using an example, we illustrate the QCE with focus
on the structure sharing and the general principles of
the QCE which include head unification, generation
of instance variables, and back-unification.
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In the illustration, we take the following pictorial
notation. The execution is depicted in an abridged
form. An OR-task is represented in a rectangular em-
bellished with shades both on the top and the bottom.
Inside the OR-task, the results of primifive functions
such as head-unification, argument generation and back-
unification are depicted by rectangulars with rounded
edges. The representation of a variable in an environ-
ment frame consists of a name and a content. The
reference binding is represented simply by an arrow.
A structure reachable from the environment is repre-
sented by a rectanpular with a set of vertically
stacked slots. The first slot at the top has a structure
name with a superscript indicating the number of the
copies resulting from structure copying. An instance
variable is represented by a variable name preceded
with '$’ sign, and *x’ and ‘y’ are used as varjable
names. Subscripts are used in the vanable names for

notational convenience.

In (Fig. 4), goal p(x1, yy) is tried for clause p(xz, y2)
: —q{(x2, f{y1)). Together with the result of unification
in (i), we can see the environment and arguments be-
fore the goal activation in (ii). An instance variable
8y, is produced at the stage of argument generation.
The arguments are unified with goal q(xz, f(y;)). As
one of the result, the instance variable $y; is instant-
iated with 4 and stored in an auxiliary store indicated
by a rectangular box with a shared boundary in (iii).
Finally, the result is propagated back to the upper
OR-task and the back-unification takes place as docs
in (iv). The resulting environment has an instantiation
on every slot and is passed to the task in the upper

level.

4. Comparison with Other Researches

Both the closed environment (CE) and the quasi-
closed environment (QCE) pursue restricted accesses.

“

= p(xayik

Pis2Ys) - glxadya)).
(A8 -

L EJVe L7 R CPD)

(Fig. 4) An example : the operation of the QCE



However, the QCE method is designed with emphasis
on an optimization of structure handling to avoid
structure copying. Indeed, when a program does not
contain structure data, there will be no differences be-
tween the two method. In this section, we compare
the QCE with other relevant methods particularly
with regard to the structure handling.

In the ROPM method(5), the binding method is
- again organized using the closed environment on top
of tuples. Each time after unification, the input tuple
is closed with respect to a reference tuple, and back-
unification engaging another closing is performed
when returning a result. This method has also an opt-
imization in structure handling. Based on the classifi-
cation of structures with three types (general, ground,
and closed structures), the method avoids copying the
dosed structures, using an indiréct pointer called a
moecule. As a matter of fact, the optimization is effec-
tive only when a large portion of structures in a pro-
gram is in a closed form at runtime. Therefore, it is
hard to get substantial benefit form the optimization
because in general, the portion of dlosed structures is
small in real world applications.

Three binding methods are compared in terms of
principal operations made with respect to the struct-
ures in {Table 1). The first three columns concern
with the requirement of the structure copying for the
three classes of structures, and the forth one is the re-
quirement of structure scanning at environment
closing. The last one is whether frames are extended
or not at environment closing. In pure closed environ-

ments, a working environment frame is to be ex-
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tended to import all the reachablc variables in the ref-
erence environmsnt frame. It is noticed that the QCE
is devoid of any type of structure copying, scanning
of structures, and frame extension.

5. Concluding Remarks

In this paper, we presented a new binding method,
called quasi-closed environment (QCE). 1t has been
designed for maintaining the efficiency of the shared
binding methods at intra-PE task threads, while for
avoiding remote accesses as doing in the closed bind-
ing method. Indeed, the main feature of the QCE
method is that no explicit closing operations are
required both at unification and at back-unification.
As a result, the QCE method does not involve with
scanning and copying of structures, as opposed the
dosed binding environment. Featured with the restric-
ted accesses and high single thread performance, the
QCE method is a viable solution to the binding en-
vironment for distributed implementation.
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