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On Minimum-Cost Rectilinear Steiner Distance-Preserving Tree

Jun-Dong Cho 1

ABSTRACT

Given a signal net N=s, 1,--,n to be the set of nodes, with s the source and the remaining nodes sinkz‘;, an
MRDPT (minimum-cost rectilinear Steiner distance-preserving tree) has the property that the length of every
source to sink path is equal to the rectilinear distance between the source and sink. The minimum-cost rectilincar
Steiner distance-preserving tree minimizes the total wore length while maintaining minimal source to sink length.
Recently, some heuristic algorithms have been proposed for the problem of finding the MRDPT. In this paper,
we investigate an optimal structure on the MRDPT and present a theoretical breakthrough which shows that the
min-cost flow formulation leads to an efficient O (n?log»7)?) time algorithm. A more practical extension is also

investigated along with interesting open problems.

1. Introduction

With the scaling of device technology and die size,
interconnection delay nhow contributes up to 70% of
the clock cycle in dense, high performance circuits.
This paper considers the problem of optimizing per-
formance-driven system design minimizing construc-
tion cost, signal delay and clock skew. The difference

in arrival times between a single pulse arriving at two
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different clocked components is referred to as clock
skew,

There have been many works related to the high-
performance interconnection physical designs [11, 6]:
Skew and delay optimization for reliable buffered
clock trees [15], Clock-period constrained buffer insertion
in clock trees [20], Buffer distribution algorithm for
high-speed clock routing [2], Activity-driven clock
design for lower-power circuits [19], Bounded-skew
clock and Steiner routing [4], Buffer insertion and
sizing under process vatiations for lower power clock
distribution [23], Performance-driven Steiner tree



1708 SiIZHDHEEE =2X] M3 M7=(96.12)

constructions {12, 5, 10, 21, 16).

Our algorithm provides a cost-and delay-minimum
clock tree topology to be used in the above specific
clock network design applications. We define a signal
net N={s, 1,-,7} to be the set of nodes, with s the
source and the remaining nodes sinks. The signal net
N is to be embedded in an underlying graph G={, E)
with N €V. The Hanan’s grid [9] is generated by
drawing a horizontal straight line and a vertical
straight line crossing each node in N. The graph G is
associated with the intersections of the Hanan’s grid
as a set of nodes ¥ and has variable edge costs;each
edge(i, 7) €E has a cost d (G, 7) equal to the routing
cost between node 7=(x;, ¥), and node 7=(x; ¥;),
j.e., the rectilinear distance between the two nodes
(lx;—x;1 + |3—y;1). A set of Hanan's nodes denoted
by H is the set of intersections excluding sinks. The
Steiner tree [22] is a routing tree T in G soabs N. A
Steiner tree for a set N may copfain at most z—2
other node set S€H called Steiner nodes on the
plane. The cost of T is defined to be cost (T) =L jyer
d G, 7). The Modnum Rectilinear Steiner Tree (MRST)
problem is given a set of N of % nodes in the plane,
to determine a set § of Steiner nodes such that the
tree cost over NUS has minimum rectilinear cost.
The problem are known to be NP-hard since a long
time [7]. The MRST approach for interconnecting the
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terminals of a clock net is not necessarily the best one
in terms of various applications [16].

The shortest distance between the source and a
given sink  in G is denoted as #;. The shortest dis-
tance between the source and given sink { in T is
dénoted as w; The problem of min-cost rectilinear
Steiner Distance-preserving tree (MRDPT) (18] (sec
Figure 1b), which are also called Min Cost Rectilinear
Steiner Arborescence [17] and Min Cost Shortest Path
Steiner Tree [11], seeks a minimum-cost tree that has
a special property such as w;=7;, for every sink . It
is known that finding the BRDPT in general graphs
is NP-hard [3]. The complexity of the problem in a
planar graph has not been known. See [11] for the
history. In this paper, we present an efficient (((z’
log 7)?) algorithm to identify MRDPT in G that is
defined as above.

This paper is organized as follows. Section 2 will
formulate the MRDPT problem using a 0-1 integer
Linear Program. Section 3 will explore 2 transform-
ation of the 0-1 integer Linear Program into a corre-
sponding min-cost flow network. Section 4 will extend
the algorithm fo construct a more general version of
the MRDPT called Load-constrained Multiple-Source
Minimum Rectilinear Distance-Preserving Forest. Finally,
conclusion will be in Section 3.

:mk nodes i The outmo Layer
- /
Switer nodes Y
SinH pe---Fo1
f
i
Hanan's nodes H

(all intersections except
snk nodes)

i
I

{€) A flow graph Gand its 1Q MRDPT

(Fig. 1) MRST, MRDPT and 1-Q MRDPT



2. Problem Formulation

A typical approach of finding MRDPT as in [18] is
as follows. 1)partition the plane into quadrants Q,,
Q), 05, and Q5. The partitioning of ihe plane divides
the sinks into one-quadrant MRDPT problem (1Q
MRDPT) as depicted in Figure l¢.

2)Solve the 1Q MRDPT problem for Qo 01, O,
and (s, independently, obtaining an MRDPT T(Qo),
T(Q1), T(Q»), and T(Q5).

3)Merge the solutions for each quadrant, thus
obtaining the MRDPT T. [i8] presented a dynamic
programming heuristic on 1Q MRDPT. Given the
solutions for each quadrant, the MRDPT T can be
found in polynomial time.

In this paper, we are only concerned with finding
1Q MRDPT (refer to Figure 1c), T(Q,), whose sinks
are in quadrant Qy (i.e., right upper corner of the
plane). Given iwo sink nodes z and 7, 7 is said to
dominate j, denoted t) j, if x;)x; and ¥;) y;. Simi-
larly, £ and 7 are said to be independent if i does not
dominte 7 does not dominate 7, denoted i # 7. A
layer L is a set of independent nodes. We shall call
the farthest layer from the source outmost lager. We
denotes by H” a set of reduced Hanan’s nodes that
excludes the intersections outside the outmost Iayer
(see Figure Ic). The underlying graph of the 1Q
MRDPT (we shall call it just MRDPT) is called flow
graph, GA=(W=(H UN), A), such that there is a
directed arc in A from 7 to jin V if r; <7, x; < x;
and y;< y2 That is, every arc is oriented toward the
source s. Thus, arcs are embedded using some
monotone or “staircase” path between the source to
any sink.

A tree is a directed in-tree rooted at node s if the
unique path in the tree from any node to node sis a

directed path called s-path. Observe that every node
' in the directed in-tree has outdegree 1. Thus the prob-
lem of MRDPT is to find a directed in-tree from G*
with min-cost.

- Let us first review the NP-completeness proof of
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the MRDPT in general graphs, in this paper, especially
transformed from the problem of the Minimum
Edge-Cost Flow (MECF) as follows.

Minimum Edge-Cost Flow( MECFS) :

eLet G=(V, A) be a directed network with a nonne-
gative cost 20 (&, /) €Z ™ and a capacity c(, j) €
Z* associated with every arc (7, ) € 4.
With given requirement flow f €Z % and bound
BeZ*, the problem is to ask for a2 minimum
arc cost flow that is to be shipped from s to £.
The variable f(z, 7) denotes a flow on arc (7, /)
€A
(1) capacity constraint: f (7, D <cG, 1, VG, 7
€A, ie., where c{, 7) indicates the maximum
amount of flow that can go through the arc
@, 7).
(2)flow comservation constraints:for v €V, let
the net flow at v be defined as F @) =Yg Heacrn)
G N-Lg veaww fU, B=0, VveEV—
{s, t}, and f(s)=—Ff, f()=f, where f is the
require amount of flow to be shipped.
Q)if A"={(, /) €EA: 1, 7)# 0}, then ¢ pes
w(i, j)<B.

The problem is known to be NP-complete [8]. Note
that our goal in MRDPT is to maximize the overlap
of s-path segments for cost savings so as to minimize
the total tree cost among all direct in-trecs. In other
words, the cost savings of an MRDPT can be
represented as Z¥ =Y pes wl, ) X F G H—1D.

Theorem 2.1 The min-cost Steiner distance-preserving

tree problem in general grahs is NP-complete.

Proof : Let us assume that all the paths from a sink to
the source are disjoint yielding the tree cost of Z%=
Ysinkk ¥i- We know that the Z* is the known upper
bound on the cost of MRDPT. Then, the tree cost of
an MRDPT 1, Z,=Z%-Z% =Yg jnes WG, 7)
FG . (Tg, pen w@, 1) fG, =g pes wG, 1)
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=Y ¢ nes WG, 7), where A"={(, N €A: G 7) #0}L
Since the solution to the MRDPT is to find a minimum
Z, for all rectilinear Steiner distance-preserving trees,
it is equivalent to find an MECF in G4, the theorem
holds. &

However, it is hard to reduce MRDPT in planar
graphs to MECF directly since MECF is not restricted
to planar graphs. The problem of MECF is solv-able
in polynomial time if (3) is replaced by Y jea
w(i, ) f(, 7)< B, which becomes the well-known
Min Cost Flow (MCF) Problem.

Min Cost Flow(MCF) :

#» The MCF is, given amount of flow, to ask for a
min-cost flow, minimizing 2=Y¢ jes w(, 7}
f (i, 7), to be shipped from s (source) to £ (sink),
satisfying the capacity and flow conservation
constraints [1].

Note that all paths from a sink to the source is of
the same length in G4, Therefore, the objective func-
tion of the MCF is of the same value over all feasible
solutions to the rectilinear Steiner distance-preserving
tree. However, the object function of MRDPT (e,
maximize Yg, Hea w(, 1 {f G, )—1)) is very similar
to the object function of MCF (i.c., minimize 3 e
« w(, ) fG, 7). The MRDPT has a special prop-
erty that the underlying graph G, does not contain a
directed cycle and it is planar. Motivated by the facts,
in this paper, we will explore the optimality structure
of MRDPT by transforming the flow graph G4 into a
transformed flow graph G® such that an MCF on G?
yields an MRDPT.

We formally formulate the problem in (-1 integer

linear programming as follows (refer to Figure 3).

0-1-LP-MRDPT :
* Minimijze

-z= ), @G, PDxG, ) +wl, Hxl,, 7)
FEHUN)

+w(j= ol)r(ja 01) +w(j7 o?.)x(j$ O?))a

subject to

Constraint 1:x (), ))=x G2, H)=xG, 0)=x(, 0)
={0,1}, V/ENUH,

‘Constraint 2:x(7, 0) +x(7, 00)=1, Vi EN
Constraint 3:

2220, o) +x(, 0) 2 (xGy, ) +xGo, N 2
(x(j, o) +=x{j, 00), Vi €H,

where x(#;, 7) and x(#, 7) are {0, 1} variables
associated with two Incoming arcs entering node
7 and x(j, 0,) and x(7, 0;) are associated with
two oulgoing arcs emanating from node 7,

respectively.

We will refer to #,, or 7, as a tail of 7 and o, or 0,
as a head of j, respectively. In the first constraint,
x(, 7) is being an edge of MRDPT. The second con-
straint Is obvious and due to the fact that every sink
node in the directed in-tree has an out-degree 1. The
third constraint for the nodes in H is due to the other
properties of MRDPT that can be represented as fol-
lowing two if-then-else statements.

if (7, 01) +x{f, 02)=0then x (@, 7) +x(, 7)=0
if x(y, 7) +xliy, 7)=0thenx(j, 0)) +x(j, 0)=0

Thus, we have the following theorem.

Theorem 2.2 The sohdion to 0-1-LP-MRDFT generates
an MRDFT.

Proof: There are six cases that does not satisfy the
properties of the rectilinear distance-preserving tree as
shown in Figure 2. The case of a is avoided by Con-
straint 2 for N and Constraint 3 for H, and the cases
of b, ¢, d, g for N and the cases of b, ¢, 4, f for H are
avoided by Constraint 3 of the 0-1-LP-MRDPT for-
mulation, respectively, Thus, they never occur in the
solution of the LP. While satisfying the constraints,
minimizing the cost function z is equivalent to finding
an MRDPT. &



3. Transformation to Min-Cost Flow
Network

Let us test now if the 0-1-LP-MRDPT has a special
structure that permits us to solve the problem more
efficiently than general-purpose linear programs.

Suppose that a matrix 4 is a 0-1 matrix satisfying
the property that all of the I's in each column appear
consecutively (i.e, with no intervening zeros). This
problem can be transformed into a mincost flow
problem [1]. However, we have not yet been able to
find the property in our MRDPT. We also could not
transform the MRDPT to the linear assignment
(minimum edge-weighted matching in a complete
bipartite graph) problem'. In this section, we present
a novel network transformation that makes the
MRDPT tractable using the minimin cost flow.

Suppose we are given a graph Gé= (=¥, U V),
A?Z) (refer to Figure 3), where A® denotes as the set of
arcs connecting nodes in V' to the nodes in ¥, with a
set of arc weights {wl|@ @, 7):G, /) €A2)} and a set
of ace capacities {cl(c(, /):G, 7) €47)}. To construct
the transformed G we model each are of G4 as one
of nodes in G? and introduce two dummy nodes I
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(), 0(7) such that 7(7) (resp. O(7)) is incident to
both 7 and 7's two incoming (resp. oulgoint) arcs in
G4. That is, the transformed graph G? is obtained

directly from G “ as follows:

Vi={IDVU oMV e(W{sHUHIUIE) oy
V.={zG, NUx(, DV jIVj €W UH) and Vi, k}, 2)

where 7 is a tail of 7 and % is a head of 7.

Next, we introduce twé new nodes, a source node s
and a smk node . For each node # €V, we add an
arc (s, 2) with capacity ¢(s, %), and for each node v
€V, we add an arc (v, £) with capacity c{, ).

Each arc (x, v) in G¥ connects two nodes u €V,
and v €V, when

@, )=U(G), j), Vi€WUH),or 6)]
G, )=U(), xG, ), VieWUH), or @
@, )=00), j), VieH, or ®
w, =000, xG, M, VieWUn), ©

where 7 is a tail of 7 and % is a head of 7.
Capacity ¢ (%, v) and weight w(x, v) for each edge
(u, v) in G & are assigned as follows, V7 (N U H):

i xndat

il @

xliad yon

)

Gl jom (1 and Ny
ém?,n

ftin?t

(g) j inN

(Fig. 2) Infeasible patterns In the MRDPT

"The linear assignment problem can be solved using O(|V|3) arithmetic operations by linear programming as done for

- mcxa.mple in [14].
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(Fig- 3) An instance of G and its transformed network
flow graph G% (to simplify the illustration and
without loss of generality, we ignored the two
Hanan’s node;one in the upper-left corner and
one in the lower-right corner, respactively.)

e(s, wW=2if w=IG) @)
cls, #)=1, otherwise (%)
clw,)=2if w=7) ®
c(v, ) =1, otherwise (10)
clw, v)=21if @elI(f)) and v=7) (1D
c(u, v)=1, otherwise. (12)

w(w, )=d(, ) if @=0()) and v=x(, k) (13)
w(n, v)=0, otherwise, (14

where % is a head of j.
In an MRDPT solution T after applying max flow
on G %, an interpretation of the max flow obtained is

as follows:

1.if frj, ;= 1 then j € H is being a Steiner node in
T or 7 €N is a sink node, where
«if f(I(7), 7J=1, then 7 has one incoming arc
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(Fig. 4) An initial rectilinear distance preserving tree T,
generated from obtaining a maxflow on G2

in T, and
»if f(I(5), 7)=2, then j has two incoming arc
inT;
2.if F(O(7), =1 then 7 is not being Steiner node
inT;
3.if FU(), x(@, 7)=1 then 7 is not being connec-
. tedtofinT;
4. if F(O), x(, E)=1 then j is being connected
tokinT. :
An example is shown in Figures 4~—5. Let us
deniote by f as

f=f(3)=f(t)=)e:y FAC) u)=§ f,H=3x INUH|-1.

Here f(y) implies the node flow balance constraints
on node 7 such that f(D=1; fG, N~Xs fG, B,
where 7 is a tail of 7 and % is a head of 7. Let us also
denote by ¥(x, v) then 0-1 variable such that v (%, v)
=1 when f(x, v) = 1, ¥(x, v) =0, otherwise.

Lemma 3.1 A max-flow with [ flows on G# satisfying
the condition
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(Fig. 5) A feasible MCF-based MRDPT T, where cost (T3) < cost (T'})

U@, N+y00G), N=1, VjEH,
yields a rectilinear Steiner distance-preserving Iree.

Proof : Refer to Figures 2, 3 and 4. It suffices to show
that the graph constructed by applying a max-flow
with the above interpretation satisfies: 1) for any sink
there is a path joining it to the source;2) it is a tree,
ie, mo cycle exisits;3) there exists mo infeasible
patterns in Figure 2 in the graph. By sending a unit
flow to each O(7), only one of outgoing arcs of O (7)
should have a flow;thus I) and 2) are satisfied and

infeasible pattern of Figure 2a is avoided. Next, con-
sider the remaining infeasible patterns to show 3) is
true. Note that we send one unit flow to O(7) and
two unit flows to each J(7) to generate all possible
patterns. To avoid the infeasible patterns among
them, we take advantage of the capacities assigned to
an incoming arc and three outgoing arcs of J(j) and
0(7), respectively and consider the following two
cases. If yU(7), )+ (0 (), /) =2, for j EH (this is
not the case for 7 €N since there is no arc ¥(0(5), 7)
introduced in G #;thus the infeasible patterns of Figure
2¢, d, and g are avoided.) in the max-flow, then one



of the infeasible pattern shown in Figure 2b, and d
exists in the graph. Whereas, if ¥(I(7), /) ¥ y(0 (),
7)=0, for 7 € H in the max-flow, then the infeasible
pattern shown in either Figure 2e or Figure 2f exists
in the graph. These infeasible patterns can be avoided
by enforcing ¥(I(7), 7) +¥(0{(), /)=1 for each j €
HO

Now, we shall show that the MRDPT can be found
in polynmial time by obtaining a min-cost flow by
sending f flows from node 5 to node £ and satisfying
the condition

yI(), N+y©OG), =1, ViEH,

in the transformed metwork G4 We shall call the
algorithm MCF-based MRDPT. The algorithm
maintains a feasible solution (that is, a rectilinear
Steiner distance-preserving tree) in the transformed
network G7 and at every iteration attempts to im-
prove its objective function value. The following

specifies this algorithm.

Algorithm MCF-based-MRDPT:
Input: A set of sinks and a source,
Ontput: An MRDPT;

begin

= construct a G4 and transform it into G #;

» gstablish an MRDPT by finding a min-cost flow
in G%, minimizing z2=Y ¢, ges Wk, v) fGe, v)
while sending f flows to be shipped from s
(source) to ¢ (sink), satisfying the capacity and
flow conservation constraints, also satisfying

yaG), N=300), =1, VjEH;

end

Theorem 3.1 The MCF-based-MRDFPT algorithm yields
an optimal solution to the MRDPT and runs in O ((n?
log 2)?) time, where n is the number of sinks.

HA HIE ZZMME Steiner 2| FA E2|0) HHE} 1715

Proof: A max-flow on G* yields a rectilinear Steiner
distance-preserving tree. Since f (2, v)=1 when w(z,
o))0 for u=0(7) and v=x(j, k) in G® and x(J, k)
corresponds to an arc in G4, the object function of
MCF problem, ie., Y w(n, v) f (x, v), coincides with
Y. wlz, v) which is the object function we wish to
minimize in the MRDPT. Therefore, the problem
can be solved using any min-cost flow algotithm in [1]
while avoiding the condition, ¥(7(7), 7)) +¥(0 (), 7)
=1, for each 7 € H in G'*. The time required to trans-
form the G into G2 is O (#?). Note that the number
of arcs and nodes in G # are (as shown.in Figure 3):
Wil=2x [INUH][-1, [V =3x INUHI|, |48 <
2x% INUH]| (for arcs (s, ), u V) +6 % |H| +5X%
IN| (for arcs (%, v), # €V, and vEV)+3X INU
NI (for arcs (g, £), v €V). Thus O({VE)=0(|4A#])
=0(?), where n is the number of sinks. Currently,
the best strongly polynomial time algorithm for
min-cost flow algorithm is due to Orlin [13);it runs in
O log ») (m -+ log ) time, where #is the number
of edges and # is the number of nodes in a given
graph G. &

4. Extension to Multiple-Source Mini-
mum Rectilinear Distance-Preserving
Forest with Sink Assignment

The algorithm proposed in the previous section can
also be applied to sink assignment problem stated as
follows. Clock free networks often contain many
gemoetrically dispersed sinks (or clocked elements).
These sinks need to be connected to a central clock
source either by shortest connections or through a set
of buffers B. Each buffer that is connected to the
source is capable of splitting signal flow streams to
different sinks. Suppose that buffers are in place and
that each buffer can handle at most X sinks. For each
sink 7, let w(, 7) denotes the line the cost of
constructing a line between buffer ¢ to sink 7 or sink £
to sink 7 or high-level buffer # to low-level buffer 7.
The problem is to constrict the min-cost network for
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connecting the source to the sinks. The problem can
be formulated with a min-cost flow problem as
follows. Construct the graph GA=(H U N, 4), each
node i EBEH denotes the buffer / and has an
incoming arc from sink or buffer 7 with a capacity of
K units (ie.,, node capacity ¢;=K). A min-cost flow
solution on the transformed graph G# (constructed in
the previous section) with a particular node capacity
¢; for each node (called G€) will determine the
min-cost network for connecting the terminals to the
source subject to the node capacity. To incorporate
the node capacity constraints into G ¥, we transform
the node capacity into arc capacity by splitting the
node into two nodes and assign the node capacity to
the arc connecting the two nodes [1]. We refer the
resulting tree as load-constrained MRDPT.

Next, suppose that a plane contains S sources. We
cluster the sinks into g groups and let g; denotes the
number of sinks at group 7. The only restrictions on
the groups is that they be clustered in a minimum
cost and that there be a single distance measure d;;
that reasonably approximates the distance any sink at
group 7 must connect if it is assigned to any type of
node 7 which is either in B or §. Each source or
buffer  can load at most ¢; sinks. The objective is to
assign clusters to sources through buffers or directed
paths in a manner that maintains the loading cons-
traints and minimizes the total forest cost. We model
this problemm as a min-cost flow problem. Every
source is connected to the super source using an arc
with zero weight and push appropriate units of flow
to the sources using the transformed graph G¢. With
the new graph called G?, we can apply the same
algorithm that has been used for the load-constrained
MRDPT.

As described above, The load-constrained multiple
distinct source problem has an interesting application
to more peneral version of the clock tree metwork
optimization problem.

We refer to the penerated tree as Multiple-Source
Minimum Rectilinear Distance-Preserving Forest (MS-

MRDPF). To incorporate the skew minimization on
the clock network even considering lower power design,
buffer insertion algorithm under process variations
for lower power clock distribution in [23] can effectively
use the MS-MRDPF as an initial topology.

6. Conclusion

We investigated a special class of Steiner minimal
tree, called mirinmem rectilinear Steiner distance-preserving
tree. We showed that the problem is tractable by
transforming the problem into the min-cost flow
problem. Due to the graph-theoretical proof of the
optimality, experimentation is omitted for bervity. We
also proposed an effective extension to the appli-
cation of constructing a high-performance clock tree
netweork.

For certain applications [16], one may wish to generate
a minimum rectilinear Steiner tree imposing different
wirelength constraints on different sourcesink paths
within a given signal net, since the critical timing is
path-dependent rather than net-dependent. We can
probibit the assignment of a sink to source or buffer
7 if the distance (or delay) d;; between these two
locations exceeds some specific distance D;;. Thus an
open problem is how to formulate the minimum recti-
linear Steiner tree using the approach proposed in this
paper and how to incorporate the wirelength or delay
constraints into the formulation. This paper opens a
new efficient approach to the well-known Steiner tree
problemn and its variants. Based on the algorithm
developed in this paper, one of the future work is to
develop and experiment a new and effective heuristic
on well-known Minimum Rectilinear Steiner Tree

construction.
REFERENCES
[1l R. K. Ahuja, T. L. Magnanti, and J. B. Orlin.

“Network Flows”. Prentice Hall, Englewood
Cliffs, New Jersey 07632, 1993.



[2] J. D. Cho and M. Sarrafzadeh. “Buffer Distri-
bution Algorithm for High-Performance Clock
Optimization”. IEEE Transactions on VLSI Systems,
3(4):84-98, 1995.

[3] H. A. Choi and A. H. Esfahanian. On complexity
of a message-routing strategy for multicomputer
systems. In the 16th International Workshop on
Graph-Theoretic Concepts in Computer Science,
Germany, pages 170-181, 1990,

[4] J. Cong, A. Kahng, C. K. Koh, and C. W. Tsao.
“Bounded-Skew Clock and Steiner Routing Under
Elmore Delay™. In International Conference on
Computer-Aided Design, page Issues in Clock
Designs, 1995,

[51 J. Cong, A. Kahng, G. Robins, M. Sarrafzadeh,
and C. K. Wong. “Provably Good Performance-
Driven Global Routing”. IEEE Transactions on
Computer Aided Design, 11(6):739-752, June
1992.

[6] E. G. Friedman. “Clock Distribution Networks
in VLSI Circuits and Systems”. IEEE, 1995,

[7] M. R. Garey and D. 8. Johnson. “The Rectilin-
ear Steiner Tree Problem is NP-Complete™. SIAM
Journal on Applied Mathematics, 32(4):826-834,
April 1977.

[8] M. R. Garey and D. S. Johnson. Computers and
Intractability : A Guide to the Theory of NP-com-
Ppleteness. Freeman, 1979.

[9]1 M. Hanan. “On Stener’s Problem with Rectilingar
Distance”. SIAM Journal on Applied Mathemat-
ics, 14(2):255-265, February 1966.

[10] X. Hong, T. Xue, E. S. Kuh, C. K. Cheng, and J.
Huang. “Performance-Driven Steiner Tree Algo-
rithms for Global Routing”. In Design Auto-
mation Conference, 1993.

[11] A. B. Kahng and G. Robins. “On Optimal
Interconnections for VLSI". Kluwer Academic
Publishers, Norwell, MA, 1995.

[12] A. Lim and S. W. Cheng. “Performance-Oriented
Rectilinear Steiner Trees™. In Design Automation

- Conference, pages 171-176, 1992.

#|4 HiE RZMME Steiner 72| RX| EBJO) AXE (717

[13) J. B. Orlin. “A Faster Strongly Polynomial Mini-
mum Cost Flow Algorithm”™. In Proceedings of
the 2th ACM Symposium on the Theory of Com-
puting, Full paper 1o appear in Operations Research,
papges 377-387, 1988.

[14] C. H. Papadimitriou and K. Steiglitz. Combinatorial
Optimization, chapter “Weighted Matching”. pages
247-270. Prentice-Hall, Inc., Englewood Cliffs,
NIJ 07632, 1982,

[15] S. Pullela, N. Menezes, J. Omar, and L. T. Pil-
lage. “Skew and Delay Optimization for Reliable
Buffered Clock Trees”. In International Confer-
ence on Computer-Aided Design, pages 556-562.
ACM/IEEE, November 1993,

[16] 1. Pyo, J. Oh, and M. Pedram “Constructing
Minimal Spanning/Steiner Trees with Bounded
Path Length”. In European Design and Test Con-
Sference, pages 244-248, 1996.

{171 S. K. Rao, P. Sadayappan, F. K. Hwang, and P.
W. Shor. “The rectilinear Steiner arborescence
problem”. Algorithmica, vol.7, (no.2-3):277-88,
1992,

[18] G. Tellez and M. Sarrafzadeh. “On Rectilinear
Distance-Preserving Trees™. Manuscript, To appear
in VLSI DESIGN, the special issue in high per-
Jormance Design Automation for VLSI interco-
nnections, May 1995,

[19]1 G. E. Téllez, A. Farrahi, and M. Sarrafzadeh.
“Activity-driven Clock Design for Low-Power
Circuits”. ¥n International Conference on Computer-
Aided Design. TEEE/ACM, November 1995.

[20] G. E. Téllez and M. Sarrafzadeh. “Clock Period
Constrained Buffer Insertion in Clock Trees”. In
International Conference on Computer-Aided Design.
TEEE/ACM, 1994.

[21] A. Vittal and M. Marek-Sadowska. “Minimal
Delay Interconnect Design using Alphabetic
Trees”. In Design Automation Conference, pages
392-396, 1994.

[22] P. Winter., “Steiner Problem in Networks: A Sur-
vey”. Netwrks, 17:129-167, 1987.



1718 SIFEXR[EE] =X MaP X 75 ({26.12)

= & 5

[231 J. G. Xi and W. W. -M Dai. “Buffer Insertion
19803 Q@ HApist

and Suzng Under Process Varations for Low

Power Clock Distribution™, In Design Automation 3} 23D

Conference, pages 491-496, 1995, 1989'd  Polytechnic  University
A3 8IHA AL

1993  Northwestern University
EECS DEpt.(8}A})

19833 ~19873  HAwisEa
(F)CAD 937 4

1993 ~19944 A AAHF) CAD 4439

19953 ~84 AFFREZ AAFsH =2+

T Fok: VLS A HA 3}, 9EE




