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SPARSE NULLSPACE COMPUTATION
OF EQUILIBRIUM MATRICES

Ho-JoNG JANG AND KYUNG-JoON CHA

ABSTRACT. We study the computation of sparse null bases of equilib-
rium matrices in the context of structural optimization and incompress-
ible fluid flow. In our approach we emphasize the parallel computation
and examine the applications. New block decomposition and node or-
dering schemes are suggested, and numerical examples are considered.

1. Introduction

An equilibrium matrix(or incidence matrix) is an m x n matrix E gen-
erally associated with a finite difference or finite element grid, a graph
or a network. The matrix E, which typically represents the interconnec-
tions among the members of the system being modeled, is usually sparse
and of full row rank m. After scaling, E can often be assumed to have
entries 0 and £1. An excellent general discussion of equilibrium matrices
can be found in the work of Strang [13], where applications to structures,
fluid flow, electric networks, and signal processing are described in de-
tail. The context in which equilibrium matrices arise is generally stated
in two forms:

Constrained Minimization Problem
(1) min yTFy —2yTs subject to Ey =p,
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Lagrange Multiplier problem

o A
E 0 A p|

In this paper we are interested in applications to structural analysis
and fluid flow computations. The structures problem of computing the
system forces, displacements and associated stresses and strains is usu-
ally formulated as minimization of potential energy of the elements in
the structure, leading to a constrained minimization problem of the form
(1). In this case s = 0, p is the vector of external loads, y is the system
force vector and — A is the displacement vector associated with (2). Here
F is symmetric and block diagonal, where each block is associated with
an element of the structure and has relatively small dimension.

The fluid flow problems are formulated in terms of the Navier-Stokes
equations, and when appropriately discretized, gives rise to the Lagrange
multipliers problem (2) (see [8] and [13]) The vector y represents velocity,
while A is pressure. The equilibrium matrix E is a discrete divergence
operator, while F is the n x n discretization of convective and diffusion
effects. F' has block tri-diagonal structure, but is generally not symmet-
ric. The equations Ey = p and Fy + ET)\ = p reflect conservation of
mass and conservation of momentum respectively; the vector p and s
capture boundary and forcing terms.

There are two methods generally used to calculate (1) or (2), the
displacement method and the force method. In this paper we discuss the
nullspace computation occurs in the force method. The force method,
as derived in [1], is now summarized.

Force Method Consider (2) and assume NTFN is invertible, where N
is a matrix whose columns form a basis of the nullspace of E.
(1) Solve Ef, =s, fpis any particular solution to Ef = s.
(i1) Find a basis of the nullspace N of F, and solve
NTFNfy = -NTFf,, fois a redundant force vector.
(ii1) Set f = fp + N fo.
The existence and uniqueness of solution to problems (1) and (2)

are generally given by two sets of assumptions leading to well-known
theorems. The first theorem is relevant to the structures problem and
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the second is important in fluid flow computations. Discussions of the
first theorem and the second theorem can be found in Dyn and Ferguson
[5] and Hall [8], respectively.

THEOREM 1. If i) F is symmetric and nonnegative definite, ii) E
has full row rank, and iii) F' and E have no comnmon null vector, then
problems (1) and (2) are equivalent and have a unique solution.

THEOREM 2. Ifi) F has positive diagonal elements, ii) F is both row
and column diagonally dominant and is strictly diagonally dominant in
the rows or columns, and iii) E has full row rank then the linear system
(2) has a unique solution.

The purpose of this paper is to develop some schemes for computing
a basis of the nullspace of an equilibrium matrix. Methods of finding a
sparse or structured basis of the nullspace of E 1as been the subject of
extensive study over the past few years [7][14][1C][9](2][3.4].

In general, there exists a product of permutztion matrices, P, such
that

(3) PE = [Rl,Rz] = .Rl[Im,Ri—le],

where R; is nonsingular. Consequently, the nullspace of PE, and hence
E, is generated by the columns of the block matrix
-1

Even though the null basis is not unique, we are interested in those which
are sparse and banded. Nullspace computation(forming N) can often
be done by appropriate ordering of the nodes and elements, extending
certain results in Berry et al. [2], Gilbert and Heath [6]. This ordering
yields a matrix E with a great deal of structure which can be exploited
by multiprocessing computers in forming N. This has been a topic of
recent interest in the literature; Plemmons and White [11], Stern and
Vavasis [12].
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2. Nullspace Computation with Substructure Scheme

In this section we will use the parlance of the finite element models
for physical structures; For a given undirected graph G with node set A’
and set of edges £. we write S=(AN, €) and say S a structure if the graph
G is connected. We may think of edges, (7,7), as elements connecting
the nodes ¢ and j. A pair §; = (N).&)) is a substructure of § if A]
and £, are nonempty subsets of A" and £, respectively, and S is itself a
structure.

DEFINITION 1. Let § = (A, £) be a structure, where A" has cardi-

nality m and £ has cardinality n. An equilibrium matrizc of Sisam xn
matrix E=(¢;), where

{ 1 7€ Nand j = (4, k) € ¢ for some k € N
€y =

0 otherwise.

In general, we call a structure with matrix E stable if E has full row
rank. A stable structure always has a null basis matrix N which can be
expressed in the form (4).

EXAMPLE 1. This is an example of a pin-jointec-truss with 10 nodes
and 31 elements. In this case each node has 2 associated forces, and
consequently, the matrix E is 20x62.

i 3‘

ER

6 «3‘
IS BN
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FIGURE 1: Pin-Jointed-Truss and its Equilibrium Matrix

The substructures 1 and 2 in Figure 1 are stable while 3 is not stable.
Our main interest here is to find a nullspace basis matrix which can be
computed in parallel. For this purpose, if the connecting elements for
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each substructure are associated with the last block of nodes, then the
equilibrium matrix takes the block angular form in Figure 1. The first
3 blocks for E are associated with substructures.

More details about node/element numbering and the following theo-
rem are described in Plemmons and White [11].

THEOREM 3. Let S = (N, &) be a stable structure with an associated
partition. Then with the equilibrium matrix E assembled into the form
of Figure 1. there is a basis matrix N of the nullspace of E such that
for some permutation matrix P, PN has the following block form:

From the observation of Example 1, we can assume that a reasonably
good scheme is used for substructures and numbering nodes and elements
of the structure so that parallel computation of nullspace basis matrix
is easy. The motivation leads to the definition fcr a proper partition.

DEFINITION 2. Let § = (N, €) be a structure and consider the col-
lection of pairs {(Ng,Ex) : N CN,E C E,1 < k < K + 1}, then the
collection is called a partition of S if

(1) N = U,’::;l./\fk is a disjoint union,

(1) &€= Ufﬁllﬁ'k, and the first A sets & are disjoint, and

(iii) (N, £k) are substructures for 1 < k < K

DEFINITION 3. Let {Sk = (N, &)k = 1.--- , K + 1} be a partition
of §=(N,E). A partition is called proper if

(1) N 41 is empty,

(i1) Ny and &, have the same cardinalities for 1 < k < K,

(1i1) Sk are stable for k = 1, -+, K; that is, each block E; of E has
an inverse.
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We remark that the equilibrium matrix E for Figure 1. with a proper
partition has the following form.

FIGURE 2: 6 Disjoint Stable Substructures and its Equilibrium Matrix

Each upper triangular diagonal block has an inverse, and corresponds
to stable substructures given by S = ({1},{e1}), --- . Ss = ({3.4.5},
{esseqres})). -+, Se = ({10}, {e10}). The remaining elements, €, - ,
€31, connect these stable substructures. Note that the diagonal structure
of R, which is a result of ordering the connecting elements from the left
to the right. Because of this structure of R;, we can also do a lot of work
in parallel computation of Ry ' Ry.

We present an example used to test the effectiveness of substructure
scheme with proper partitions in parallel computations. The following
calculations for each example were done on the Alliant FX/8 at Argonne
National Laboratory. The Alliant FX/8 has 8 processor nodes(called
CEs or computational elements) with vector instruction. Parallelism
may be achieved by using compiler directives. The parallelism is loop
based with the inner loops dedicated to the vector ‘nstructions and the
outer loops dedicated to CEs. Various compiler directives can be used
to control the amount of parallelism.

- Qg Optimized Serial

— Ogv Optimized Vector

— Ogc — c# Optimized Concurrent with # of processors
-0 Optimized Concurrent with Vector

We suppressed vectorization because it couldn’t give a decrease in
time due to data dependency in back substitution. Following two ex-
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amples indicate very good effeciencies of using substructure with proper
partition on parallel computation. Here speedup is defined as follows

time for — Ogc — c# calculations

Speedup = —
peecup time for — Og calculations

EXAMPLE 2. This example of a pin-jointed-structure with 14 nodes
and 44 elements, and the matrix F is 28 x 88.

Directive . Time | Speedup
| “Og 6.81E£-02| 1.00
= -0g. -¢; | 1.61E-02| 1.95
FUR i -Og. -¢c4  8.59E-03 | 3.66
LLLLLILLL |onea sose03| 62

EXAMPLE 3. Consider a rigid frame which models a wheel with 8
spokes. Each spoke is a stable substructure and together they form a
proper partition. The connecting elements are indicated by the light
lines e33, -+ ,e49. The matrix E is 96 x 120.

Directive | Time | Speedup
-Og 6.87E-02 1.00
-Og. -¢; | 3.57E-02 1.92
-0g. -¢4 | 1.78E-02 3.86
-Og. -cg | 9.68E-03 7.10

el ed

3. Application to Incompressible Fluid Flow

In this section we consider an application of the substructuring method
with proper partition to the incompressible fluid flow. As mentioned in §
1, an appropriate discretization of the Navier-Stokes equations will yield



1182 Ho-Jong Jang and Kyung-Joon Cha

a sequence of problems of the form (2). The matrix ¥ will change a little
from one time step to next in fluid case. As E reflects the conservation
of mass equation, E remains fixed.

The driven cavity problem is presented in whicl the substructuring
method with proper partition has been successfully applied on practical
fluid flow problem.

EXaMPLE 4. (Driven Cavity)

u=-1.0 1 4
v= 0.0
1.0 WY S SR S Y vil
J ‘ Z20
No-slip No-slip 3 19 i .
; . )
o}t ‘ dis v27 v3l
) ] : |7 vio
No-slip 1.0 ‘

FIGURE 3:
Driven Cavity and its Finite Difference Grid with Substructure

A finite difference grid with 20 cells has 36 unknown velocity compo-
nents is illustrated in Figure 3. Each cell is analogous to a free node and
each vector component is analogous to an element. "The nodes at the top
of vectors vy, vy, v13. g and vy are fixed nodes. The connected graph
is now directed and the corresponding equilibrium mnatrix has entries
and 1, and is called an incidence matrix in Hall [hall]. Consider the
proper partition of a finite difference grid as in Figure 3.

Each substructure 1s stable, and tlien the associated equilibrium ma-
trix E has the following form:
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1 1
-1 1 . 1
where f = 1 1 ]
-1 1 1
For example, row 11 in the incidence matrix reflacts the conservation of

mass for cell 11:

V31 — V27 Y11 — Vo

h h

=0,

where h = Az = Ay.
The resulting nullspace basis matrix N has tle form:

- f—l
;f—l

f—l
—f

f—l
_f—l

~I

f~1
—f-1

|

, where f7! =

O S Ty

The matrix N also can be expressed as product »f N’ and F, where

N'F = -1

It is interesting to compare this nullspace basis with the basis, N.
obtained in Hall [8] by using graph theoretic ideas. The nullspace basis
in Hall [8], N, has the following form:



1184 Ho-Jong Jang and Kyung-Joon Cha

-1 1

By interchanging columns 4, 8 and 12 with 13, 14 and 15, respectively,
result in a transformation of N’ is exactly same as —N. N is more
sparse, but N may not be constructed by utilizing the properties of a
proper partition. We can extend all of the discussion we made for the
2-dimension driven cavity problem to the 3-dimension case.
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