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SOME ANALYSIS ON THE SUBMANIFOLDS OF MFEX,

Ki-Jo Yoo

ABSTRACT. The purpose of this paper is to investigate a necessary
and sufficient condition for submanifold of M EX, to be einstein and
to derive the generalized fundamental equations on the submanifold of
MEX,

1. Introduction

In Appendix II to his last book, “The meaning of relativity”, Ein-
stein [6] proposed a new unified field theory taat would include both
gravitation and electromagnetism. Although the intend of this theory is
physical, its exposition is mainly geometrical. Characterizing Einstein’s
four-dimensional unified field theory as a set of geometrical postulates
for the space-time X4, Hlavaty [7] gave the mathematical foundation
for the first time. Since then the geometrica consequences of these
postulates have been delveloped very far by & number of mathemat-
icans and theorectical physicists. Generalization of this theory to an
n-dimensional generalized Riemannian manifold X,, was considered and
studied by Hlavaty, Wrede [11], and Mishra [10 .

Recently, Yoo [13] introduced a new concept of M E manifold M EX,
connected to X, an ME connection of the forra (2.8), which is similar
to Yano [12] and Imai’s [9] semi-symmetric met-ic connection.

This paper contains four sections. Section 2 mtroduces some prelim-
inary notations, concepts, and results, which are needed in the present
paper. Section 3 derives several identities which hold on the submani-
fold X,, of MEX,. In particular, we prove a necessary and sufficient
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condition for the submanifold of M E X, to be einstzin. In the last sec-
tion, we derive the generalized fundamental equations on the subman-
ifold of MEX,, such as the generalized Gauss’s formulas, generalized
Weingarten’s equations, and generalized Gauss-Codazzi equations.

2. Preliminaries

This section is a brief collection of definitions, notations, and basic re-
sults needed in the present paper. It is based on the results and notations
of Chung et al, [2],[3],[4], and Hlavaty [7].

Let X, be a generalized n-dimensional Riemannian manifold referred
to a real coordinate system z”, which obeys coorinate transformation
v P L% oz
r¥ — z¥, for which Det (61:) # 0.

The algebraic structure on X,, is endowed with a general real non-
symmetric tensor ¢,, the so-called Einstein unified field tensor. It may
be split into its symmetric part hy, and skew-symmetric part ky,:

(21) 9u = h/\u + k)\u-,
where
(2.2) 8= Detlgrs) 0. = Det(hy,) £0.

We may define a unique tensor h*” by

(2.3) hy b =4,
The tensor hy, and h** will serve for raising and/or lowering indices of
holonomic components of tensors in X, in the usual manner.

The differential geometric structure on X, is iraposed by the ten-
sor g, by means of a real general connecting I'} . which satisfied the
transformation rule:

_ oz (0x? dz7 _, 9%z
(2:4) B = 5pe (6:2A dznl 61T 61*6@5)
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and the system of Einstein’s equation
(2.5a) Ouwgru — Tugoan —T3ug0a = 0,
or equivalently
(2.5b) Dugay =250, "9ra-

Here 5),” = F"/\# is the torsion tensor of F‘)’\“ and D, denotes the
symbol of the covariant derivative with respect to I'} "

A procedure similar to Christoffel elimination applied to the symmet-
ric part of (2.5b) yields that if the system (2.5) admits a solution Iy,
it must be of the form [7]

v v v TV
(26) F/\p = { A#} + S/\H + L Aps
where
(2.7) qu\u = 2hm5a(r\6ku)ﬂ

and { /\V/l } are the Christoffel symbol defined by hy,.

The Einstein’s connection FK# which takes the form

(28) Kl‘ = { )\Vu } + 26AVX1/ - 29A4L‘YV7

for a non-null vector X, is called an M E connection and a generalized
Riemannian manifold X,, connected by this connection is called an n-
dimensional M E manifold and will denoted by M EX,,. In the represen-
tation of M E connection, the vector X¥ will be called an M F vector. A
necessary and suflicient condition that the M E connection holds is that
for a non-null vector X, the torsion tensor Sy,” is given by [13]

(2.9) San” = 265X, — 2k, X"
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and the tensor field gy, satisfles

(210) g,,(,\X#) + Qku(/\ku)a — h,\uX,, = 0.

We use the following abbreviation for an arbitrary vector X y:

(2.11a) PXxy=PEeX, (p=0,1,2.---),

(211b) (P)X‘/: ('_1)p(p)ka’VXC¥ (p':O]-*Q-)w
+

(2110) (P)X)‘ = (pb‘l)‘X-A + (p))()\ (p = 1127 33 T )

Let X, be a submanifold of X, (m < n), defined by a system of real
parametric equations

(2.12) y =y (a! - 2™,

It is assumed that the functions y¥(z') are sufficiently differentiable and

the rank of the matrix of derivatives B;¥ = %y;r is m. At each point of

X, there exists the first set {B?, N”} of n linearly independent non-
T

null vectors. The m vectors B,” are tangential to X,, and the n —m

vectors N¥ are normal to X,, and mutually orthogonal. That is,
r

(2.13a) hagBEN? =0, hogN°N? =0 for = #y.
T Ty
The process of determining the set {N"} is not unique unless m = n—1.
xz
However, we may choose their magnitudes such that
(2.13b) hagNONF = ¢,
Ty

where £, = +1 or -1 according as the left-hand sides of (2.13a) is positive
or negative. Put

BY ifA=1,-,m (=1i)
(2.14) v =

NY fA=m+1,---,n (=ux).
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Since { E% } is a set of n lineary independent vectors, there exists a

unique second set {Ef} of n linearly independent vectors at point of
X, such that

(2.15) E{EY =¢%, EZE$ =6}
Put

Bt ifA=1,---,m (=1),
(2.16) Ef={

Ny fA=m+1,---,n (=1)
(2.17) BY = Bi\B!.

Then, it has been shown that the following relations hold in virtue of

(2.15):

(2.18a) BB; =&, NuN° =65, BLN®=NaBI =0.
(2.18b) By =6~ S NANY,
(2.18¢) BSN, = BN® = 0.

In the present paper, we use the following types of indices:

(1) Lowercase Greek indices «, 3,7, -+, running from 1 to n and
used for the holonomic components of tensors in X ;.

(2) Capital Latin indices A, B,C, -, running from 1 to n and used
for the C-nonholonomic components of tensors in X, at point of
Xm.

(3) Lowercase Latin indices ¢, j, k, - - - , with the exception of z, y, and z,

running from 1 to m(< n).
(4) Lowercase Latin italtic indices x,y, and z, running from m + 1
ton.
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The summation convention is operative with respect to each set of the
above indices within their range, with the exception of z, y, and z. We

note that the vector B} and N are also tangential and normal to X,,,
respectively.

The set {E%} and {E{!} will be referred to as a C-nonholonomic frame
of reference in X, at points of X,,. This frame of reference gives rise to
C-nonholonomic components of a tensor in X,,. If Ty are holonomic
components of a tensor in X, then at points of X, its C-nonholonomic
components T)_{}_‘j_' are defined by

(2.19) T =TS E}. Eb...
In virtue of (2.14), an easy inspection show that
(2.20) T =TH E4 - E¥--.
In particular, the quantities

(2.21) Ti =Tg B..--BY...

are components of a tensor in X,, and are called the components of the
induced tensor of T} on X ,of X,,. As a consequence of (2.20), we have

(2.22a) Xi=XBi+ Y X.N,,

(2.22b) X" =X'B{+) X*N*,

where

(2.22¢) X;=X,B?, X,=X.N® X,=¢X"

(2.22d) X'=X*B!, X*=X°N,.
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The induced tensor g;; of g, is given by

(2.23a) gi; = 9apBIBY,
where its symmetric part h;; and skew-symmetric part k,; are
(2.23b) hij = hasBPBY, kij = kagBXBY.

It has been shown that the induced tensors h;; of hj, and hi* of MY
satisfy

(2.24) hih™* = 6%,
Therefore, they may be used for raising and/or lowering indices of the
induced tensors on X,, in the usual manner.

If FK# 1s a connection on X,,, the connection Ffj defined by

k _ nk anf
(2.25a) r% = B (B) +T1,BB)).
where
OB 9%y
5 A’ = U =
(2.25b) B/ 59 92007

is called the induced connection of PKH on X,, of X,. It should be

remarked that the torsion tensor Sijk of the induced connection Ffj is
the induced tensor of the torsion tensor S’Ku of the connection FK”. That
is

(2.26) Si;* = Sas"BB/ Bk
Furthermore, the induced connection {z]; } of { /\IL} is the Christoffel
symbol defined by h;;. That is

k 1
(2.27) {zj } = 5k (Qihjp + Oshup = Ophiy)

In our subsequent considerations, we frequently use the following C-
nonholonomic components:

x onf I,'
(228&) S,‘]’ = SaB‘Y‘Bi Bj N ¥

(2.28b) Uiy =U"asB{B/N,,.
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3. The submanifold of MEX,,

In this section we shall prove that the induced connection is the M E
connection and that several identities which hold on the submanifold of
MEX,. In particular, we find a necessary and suflicient comdition for
the submanifold of M EX,, is to be einstein.

Let €2;; be the generalized coeflicients of the second fundamental form

of X, and D; be the symmetric vector of the generalized covariant
derivative with respect to z's. Then

(3.1) D, (B{) = B{ +T§,B/B] - T%B}.

The vector D;B? in X, is normal to X,, and may be given by [3]

(3.2) D,Bf = - Q,N®,
where
(3.3) Qi = - (f)jBf) Na.

T
Furthermore, the tensor €2;; is the induced tensor on X, of the tensor
T
DgN 4 in X,. That is,

x

(3.4) QO = (DﬂN(,) BB,

Let lz\,- ; be the generalized coeficients of the second fundamental form

with respect to the Christoffel symbol { )\V‘u } That is
(3.5) Aij = (VIQNQ> B?BY.

Here V3 denotes the symmetric vector of the covariant derivative with

respect to

v
A
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THEOREM 3.1. The coefficients §;; of the subinanifold X,,, of MEX,
are given by

x z
(36) Q,‘j = A,‘]‘ - Zé(xl-ij) + 29,']‘)(-1.
PROOF. In virtue of (2.6), (2.28), (3.4), and (3.6), we have

xr
T T
ij :A,'j ‘"Sij - U ij-

On

(3.7)

Also, on an X,, of M EX,, making use of (2.6), (2.8), (2.9), (2.22), and
(2.28), we have

(3.8) St = —2k; X7,

(3.9) U®,j = 268X, — 2hi; X*.

Our assertion (3.6) immediately follows by substituting (3.8) and (3.9)
into (3.7).

THEOREM 3.2. On an X,, of MEX,, the induced connection Ffj 18
of the form

(3.10) Iy = { k } + 265X, — 29, 3°F.

]
PROOF. Substituting (2.8) into (2.25), we obtain
k _ Rk v aph
I} = B (B]j+{aﬂ}B,- Bj)
=2(61X5 — gasX") B B) BE.

Making use of (2.17), (2.21), (2.22), and (2.25), we have (3.10).
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PROPOSITION 3.3. In MEX,, the system of equation (2.5b) may be
given by

+
(311) Dwgz\u = ”‘4kwu)(/\a

which can be split into

+
(312&) Duh,\# = _4kw(u‘X’/\)7

+
(3.12b) Duky, = —4k X 5.

Furthermore, in MEX,,, we also have
+
(3.13) Do RN = —4h R Pk, 35X 4.

PROOF. Substituting (3.8) into (2.5b) and making use of (2.1) and
(2.11), we get (3.11).

THEOREM 3.4. The induced connection Ffj on X,,, given by (3.10),
of FK” on MEX, is an ME connection.
PROOF. In virtue of (2.5b), (2.9), (2.22), and (2.23a). it follows from
(2.19).
Dygi; = (Dugx,) BY B} B!
=2((63X, — 65X,) - 2kuuX®) gxaBi B} B
= 2(X 9o — Xugru) BYB B!
= 4 (8., — ki X7) gip

= 25" gip.



Some analysis on the submanifolds of M EX, 1041

THEOREM 3.5. On an X,, of MEX,,, a necessary and sufficient con-
dition for the induced connection Ffj to be einstein is

(3.14) 3 (kz[,éﬂk . 2;¥Ik,ik]k> - 0.

PROOF. In virtue of (2.13), (2.18), and (3.2), we have

(3.15) Digij = (Dugan) B B}BY = 23 "k, Qs

If Ffj is einstein, then the relations (2.5b), (2.11). (2.17). (2.18b). (2.21).
and (3.15) gives the following relation

(3.16) 3 (kr[ﬁﬂk - Sjkfk,«z> — 0.

xr

Substituting (3.9a) into (3.16), we have (3.14). The reverse calculatings
give the proof of the sufficiency.

4. The generalized fundamental equations for submanifold
of MEX,

This section is devoted to the derivation of the generalized fundamen-
tal equations for submanifold of M E X, such as the generalized Gauss
formulas, Weingarten equations, and Gauss-Codazzi equations.

THEOREM 4.1. ( The generalized Gauss formulas for X ,,, of MEX,
) On an X,,, of MEX,, the following relation holds:

I

(4.1) D;Bf =) (-Aij + 205X ~ Zgi}XI> N©.

xr
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PROOF. Substituting (3.5) into (3.2), we have (4.1).

In order to derive the generalized Weingarten equations, we need the
following preparations. Let

(4.2) M¢ = D,N*.

LEMMA 4.2. The vector M} may be decomposcd as

(4.3) M = MiBf +) MIN®.
Yy

Furthermore, XM; is also the induced tensor of D,N® and .M;’ 1s the
x T I

y
induced vector of (D.,NO‘) N. That 1s,

(4.4a) M} = M3 B, = (szya) B.B.
A « yr o y,'
(4.4b) MY =M5N, = (D,N*) NoB/.

PROOF. The first assertion (4.3) follows from (2.22) and the relations
(4.4) obtain from (2.21).

LEMMA 4.3. On an X,, of MEX,, the induced tensor AI; of ]\/I;’ 18
given by ' 4

. . + . .z
(4.5) M = -—4h”"kﬁ(UX6)]¥”Banf e h ™ Qs
ProOOF. Equation (4.4a) gives
M= (Dﬁ(hﬂmg)) B. B!/
(4.6) .
= D3(h*")NB,BY + h* (Dﬁm> B.B’.

Substituting (3.13) into (4.6) and making use of (2.21) and (3.4), we
have (4.5).
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LEMMA 4.4. On an X,, of MEX,, the induced vector M;’ of M is
given by '

+
(4.7) MY =2k X ,.

z

PROOF. Generalized covariant differentiation of both sides of (2.12b)
with respect to z7 gives

(4.8) D (hag)N°N°B] + 2has (D4N°) N*B] = 0.

Substituting (3.12a) and (4.4b) into (4.8) and making use of (2.22) and
(2.23), we have (4.7).

Now, we are ready to prove the generalized Weingarten equations for
on an X,, of MEX,,.

THEOREM 4.5. ( The first representation of the generalized Wein-
garten equations on an X,, of MEX,,.)

° 5 + - + 3

D;N® =—2( h*kg,XsN° + kg"X, | B

(48) ¥ i o

+Z2kjyXTJ;T +e.h'" QB2
Y

PROOF. Substituting (4.5) and (4.7) into (4.3) and making use of
(2.22), we have (4.8).

THEOREM 4.6. ( The second representation of the generalized Wein-
garten equations on an X,, of MEX,,.)

=3 x T R + Fl +

DN, =Q;;BL+2 (kﬂvxaNﬁ + ekaXz) B]
(4'9) + =z + .,
+2 | k7, XN, +Zszhaﬁk1yxﬂyﬂ :

Y
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PROOF. Substituting (3.12a) and (4.8) into

(o]

D;Na =D, (has?) = hasD;N? + (Dyhos)N?B]
and making use of (2.3) and (2.22), we have (4.9).

In order to derive the generalized Gauss-Codazzi equations, we need
the following curvature R,,)" of MEX,, and Rijy™ of X, of MEX,.

(410) h’wuz\y =2 (a[ﬂ IV/\IuJ] + I‘S"[w iu(’“‘] ' ’

’

h_ofa ph h
(4.11) R =2 (8, Ty + Do)
THEOREM 4.7. ( The generalized Gauss-Codazzi =quations for an X,

of MEX, ) On an X, of MEX,, the curvature tensor defined by (4.10)
and (4.11) are involved in the following identities:

3 c 30
R,‘jkh = ng-YEaBgB‘i B;Bk +- 26,;Qi[kQ|m|j]hhm

(4.12) . : N L
-4y QuBiBL (h“ékﬁ,xbm + kﬁf’xr) ,
<} T T T +
2D[kQ]]1 :Rﬂ_ﬁﬂ]\lanB;Bf + 4Qi[k (X] + Z k]-]y}(y>
(4.13) v

z + + =z
—_ 4Qz[ka] (kﬂ6X5 + Z kﬁL‘YI,Na) .

PROOF. In virtue of (3.1), (3.2), (4.10), and (4.11), we have
(4.14)

o] =3 [
2D D; B =2 (3[,,D“B§’ -rr

T (DmBY) = T (D;) BS, + 15, (D, B, )B;])

[#]

.
= =Ry By B] Bf + Riji™ B +4Y Q5 XN
T
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On the other hand, the relations (3.2) and (4.9) give

2D D, BY = ~2ZD 2, Ne

22( Qk ) L 7} ZQ,[kk], ‘xl_m

~4 Z éi[kkj] / (haékdaX sN + kauj&rr)

(4.15)

+ ZEIQ,'[thnmhimB;l,
Hence comparing (4.14) and (4.15), we have

(4.16)
Ry;i™ By, =Reys"B{BB{ +2 (DUQk]i - 20,-[]-Xk1) N

z +
+4‘;§Qi[kkﬂy‘¥x.fyo
A B ’ ab B ro a+
_4ZQ,~[kBj] R kse XN + k5 X,
z
r oz :
+2€IQi[lem|j]hlmB?.

Multiplying B! on both sides of (4.16) and making use of (2.17), we have

the identity (4.12). Similary, multiplying ]i’a on both sides of (4.16), we
have (4.13).
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