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ON THE THREE OPERATOR SPACE
STRUCTURES OF HILBERT SPACES

DONG-YUN SHIN

ABSTRACT. In this paper, we show that {|£]|» = || Yier ‘”l"::H% gl e=

(13 5er z:-‘x,'||}7 for § = 32, zies in Mn(H), that subspaces as Hilbert
spaces are subspaces as column and row Hilbert spaces, and that the
standard dual of column (resp., row) Hilbert spaces is the row (resp..
column) Hilbert spaces differently from [1, 6]. We define operator Hilbert
spaces differently from [10], show that our definitio 1 of operator Hilbert
spaces is the same as that in [10], show that subspaces as Hilbert spaces
are subspaces as operator Hilbert spaces, and for & Hilbert space H we
give a matrix norm which is not an operator space norm on 1.

1. Introduction

The theory of operator spaces and their completely bounded maps has
provided a powerful tool for studying operator zlgebras. D. P. Blecher
and V. I. Paulsen [3] and E. Effros and Z. J. Ruan [5] replace bounded op-
erators by completely bounded operators, isometries by complete isome-
tries, and Banach spaces by operator spaces. E. Effros and Z. J. Ruan
[6, 7], D. P. Blecher [1] and G.Pisier [10] study Hilbert spaces as opera-
tor spaces. E. Effros and Z. J. Ruan (6, 7], D. I'. Blecher [1] study the
column and the row Hilbert spaces and G.Pisier [10] studies the operator
Hilbert spaces.

In section 2, we study column and row Hilbert spaces. We show
that ||£]l» = [| X2ie; J"i‘””:”%v €= 1] E,‘EIIZ‘WH% for £ = 3, @6, in
M, (H), that subspaces as Hilbert spaces are subspaces as column and
row Hilbert spaces, and that the standard dual of column (resp., row)
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Hilbert spaces is the row (resp., column) Hilbert spaces differently from
1. 6].

In section 3, we study operator Hilbert spaces. We define operator
Hilbert spaces differently from [10], show that our definition of operator
Hilbert spaces is the same as that in [10], and show that subspaces as
Hilbert spaces are subspaces as operator Hilbert spaces. Finally, for a
Hilbert space H we give a matrix norm which is not an operator space
norm on H.

The author would like to express his gratitude to Professor A. M.
Sinclair for many valuable discussions and suggestions. This work was
done while the author was staying at The University of Edinburgh.

2. Column and Row Operator Space Structures of Hilbert
Spaces

Let E be a vector space over the complex field (7, let Af,,(E) denote
the vector space of n x n matrices with entries from E, let M,, denote
the set of all n x n complex matrices with C*-norm, and let {e,;} denote
the standard matrix units for M, that is, e,; is 1 in the (7, j)-entry and
0 elsewhere.

For r = [.rl’]’] - ]\ffm(E), y = [y,-j] c ﬂ/In(E), a = [a,]‘], ,’5) = {,31']‘] €

M,,. we write

0
c Dy = [g y} € Mpin(E),

ar = [z;5], 28 = [wij] € Mn(E),

m f . > ayal
where z;; = szl Qiptp; and w;; = szl Bp;rip. Here we use the
symbol 0 for a rectangular matrix of zero element over E.

If there is a norm || - ||, on M,(E) for each positive integer n, the
family of the norms {|| - ||} is called a matrix norri on E. E is called
a space with a matrix norm. If there no danger of confusion, we set

A space E with a matrix norm is called a matrix normed space if for

a, € My, x € My(E),

n-.

lazBlln < llall il 3]
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A matrix normed space E is an operator space if it satisfies

HI & y“1n+n = Inax{“‘r”m’ HUHH}
n times

D

If H is a Hilbert space, we set H" = H ¢ --- @ H. Let B(H,K)
denote the set of all bounded linear operators from a Hilbert space H to
a Hilbert space K and B(H) = B(H, H). We may identify B(H") with
M,(B(H)). Then B(H) is an operator space. Since a C*-algebra A4 can
be embedded in B(H), A is also an operator space with the canonical
matrix norm.

Suppose that E and F are matrix normed spaces and ¢ : E — F s
a linear map. We define the map ¢, : M (E) — M,(F) by on(|ri;]) =
[¢(zi;)] for [z4;] € Mp(E). We write ||8||cs = sup{||¢n]| : n € N}, where
ol = sup{llo(x)|| : @ € E,||z|| = 1}. We call ¢ completely bounded if
|9llcb < oo. We call ¢ a complete isometry if for every positive integer n.
On: Mp(E) — M,(F)is an isometry. Let CB(E, F') denote the set of all
completely bounded linear maps from EF to F and CB(E) = CB(E. E).
Two matrix normed spaces are completely isoraetrically isomorphic if
there is a complete isometry of the first space onto the second.

Given Hilbert space H, we may identify M,(H) with B(C", H") for
every positive integer n. Then the Hilbert space H{ with this matrix norm
is an operator space which is called a column Hilbert space and is indi-
cated by H. and the norm on M, (H ) is indicated by | - ||.. Secondly, we
may identify M, (H) with B(H™, C") for n € N. This gives an operator
space structure on H, which 1s called a row Hilbert space and is indicated
by H, and the norm on M,(H,) is indicated by || - ||,.

DEFINITION 2.1. Let I be a set, let z; € M, for « € I, and let
Sy = Zie‘l x; € M, for any finite subset J of I. A series Zzel r; 1s said
to converge if there is a matrix a € M, with the rollowing property : For
any € > 0 there is a finite subset J of I such that J C J; C I implies
that || ) ;¢ @i — all < e, where || - [ is the C"*-norm.

In this case we also say that » . ;z; converges to a and we write

Dl i = a
We may consider z;; as a column (resp., a row) vector for [z;;] €
M, (C*). Then we may consider [z,;] as a nk x n (resp., a n x kn)

el
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matrix. We denote this nk x n (resp., a n x kn) matrix by a (resp., 3).
The next proposition shows why we call H,. (resp., H, ) a column (resp.,
a row) Hilbert space.

PROPOSITION 2.2. For [z;;] € Mn(C*), we have ||[z;;]|l. = ||a| and

lzilll- = 11811-

PROOF. We may consider [z;;] € M,(C*) a linear transformation
from C™ to C*™ (resp., a linear transformation from C*" to C"). Then
« (resp., B) is the matrix of [z,;] relative to the standard bases. Hence

lilzi]lle = lleell and |[z4]l] = ||8]].

Let {e;}ier be an orthonormal basis for a Hilbert space H, let [¢;;]
be in M,(H), let §;; = Elelxﬁjez be H, and let x; = {1£]] be in M,.
We formally write [¢;;] = Zz’el z;e;. For a n x n matrix z. let r! denote
the transpose matrix of z and let  denote the transposc matrix of x*
We can easily show that ), ; z; converges for { = -uef rie; €M (H)

We show that [[£]|, = || 32,7 zir} 2 and ||¢].= i1 xiT; ||z for €=
> icr Tiei € M,(H) and that they are independent to orthonormal bases.

LEMMA 2.3. Let {e;}ic; and {fi}.c; be orthonormal bases for a
Hilbert space H, let { = [(;] be in Mu(H) and let € = 3., re;
= Zie] yifi for x;,y; € M,,. Then the following hold :

(1) 2ierici =Y i1 yiyi,

(2) Zie] riry = Zie[ Yy

(3) Zie] T QT = Ziel Yi & Vi,

(4) Zie] Ty &ay = Zie[yi & y;.

PROOF. Lete; = Z,€1 afi. Then f; = Zlel/\“clandZIel Xitdp =
6k Since ZEI‘T €, = Z,e](jlzlel llfl Zlql(zzel’ 11‘1 fl W

= ZIEI Auzi. Hence Zlel Yy = Zl,k,ze] /\ll)‘klrﬂk = Zzeﬂﬂ and
similarly, the others hold.

THEOREM 2.4. Let {e;}ics be a fixed orthonormal basis for a Hilbert
space H andlet { = . z.e; bein M,(H). Then ||¢||, = | Zielaf,-rfﬂ%
and ||£]|= || 2o;¢y wFaill?.
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PROOF. First, we identify M,(H) with B(H™ C"). Lety = 3, yiei
be in H™ and let ¢ = Zlief zie; be in Mn,(H). Then &(y) = > ,cpTivi
and |lyll = (3¢ luill*)2. Hence

1€ll- = sup{ll&(y)ll -y € H™ |lyll = 1}

= sup{|| inyi“ : Z lvili® = 1}

icl 134

=Yzl

el

Secondly, we identify M,(H) with B(C™,H"). Let A be in C" and
£ =) ;c;Ti¢: bein M, (H). Then £(X)= Zie] x;\e;. Hence

[€llc = sup{[|E(A)]| : A € C™, [[A] = 1}
=sup{|| Y _z:deill : A€ C M =1}

el

=) ztai2.

el

Let X @Y be the projective tensor product of two operator spaces X
and Y, and X (resp.,Y; ) be a subspace of X (resp.,Y ). Then X, ®,.Y;
is a subspace of the normed space X ®, Y, but it is not a subspace of
the operator space X ®4 Y. But, the next theorem shows that if H is a
subspace of a Hilbert space K, H, is a subspace of the row Hilbert space
K,, and H, is a subspace of the column Hilbert space K.

THEOREM 2.5. Let H and K be Hilbert spaces and ¢ : H — K
be isometric. Then ¢, : H, — K, defined by ¢,.(£) = ¢(£) and ¢, :
H, — K. defined by ¢.(£) = ¢(£) are completely isometric.

PROOF. Since ¢ is isometric, it preserves inner product, 7, €, (¢(£), ¢(7))
= (&,n) for £,n € H. Hence if {€;},¢; is an orthonormal basis for H, then
{#(ei)}:ier is an orthonormal set in K. Since 4,.(£)= >, wiglei)=
b, () for £ € 3, riei € Mu(H), ¢, and ¢, zre completely isometric
by Theorem 2.4.
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Let a = [a;j]beanxn matrix, let b and ¢ be m x m matrices, let I,
be the n x n identity matrix, and let a @b — [a;jb] b a mn x mn matrix.
Then a @ b= (a@ I,,)(I, 2 b), (a@b)* =a*@b*, a®b+aDc= a®(b+c),
b@atcwa= (bte)eaand [T a0 bl = X0, b o a for
a; € My, b; € M,,.

It was proved in [1,6] that the standard dual space of a row Hilbert
space H, (resp., a column Hilbert space H.) is the column Hilbert space
H. (resp., row Hilbert space H.). But to give a new Proof we need the
following Lemmas.

LEMMA 2.6. Let k,m,n be positive integers and let a; € M,, b, €
My, for 1 <i < k. Then the following hold :

(1) ISy @@ bl < I S a3 SE b
|

@) IC L @i @bl <ISE a3 S5 brby)3.
() ik <m. | T aallt = sup{| SF c;wa, ] : e, € M, | S5

credl = 1},
(4) ik <m. | TL, atallt =sup{l| S, e;0a, | e, € M. | S5
cicy|| = 1}. «

PROOF. Let A be a C*-algebra and zy, -, 2y, y;, - - - Yk € A. Then
1t is well known that || Zl-k:] x|l < || Zf:] zit||7|| Zle ytyil|2. Since
a@b= (a0 In)I,3b), a®@b+tasc= a@b+c),b&a+c®a=
(b+c)®aand | Zle a; bl = || ZLI bi @ a;|| for a, € M, b; € M,,,
|25 @@bl= | S (@8 L) (Lob)l< | S5, el S5, b
and [[2my @i @ bill< | XL, aia|F T, 013, Hence (1) and (2)
hold.

Put ¢; = ey;. Then || Zle cicill =1and|| Zf:l citia||= || Zle a;all].
Put ¢; = ¢;;. Then || Zle cicill =1 and || Zle ¢ Gagfl=| Zf:l ala;l].
Hence (3) and (4) hold.

Note that we identify ML (H,) (resp., M, (H.)) with B(C",H") (resp.,
B(H",C™). For ¢ € H, we define we:H —Candig:C — H by

we(n) = (n.€), (X)) = A¢
Then Hy= {wg: ¢ ¢ H} H={i¢:€¢c H} and

/\w5+w,,:w;\5+n, )‘if+iﬂ:i/\f+ﬂ
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for A€ C, £, n € H. We define p; : H. — C and ¢¢ : H, — C by

pf(iﬂ) = (77’6)? Q5(w7l) - (577)

For { = [{a] € ML(H), we set we= [we,,]. ie= [ig,. ], Pe= |pe..)-
and ge= [g¢, ). Let HX(resp., H}) be the standard dual of H.(resp.,
H;), 1,e, we identify M, (H})(resp., M, (H}) with CB(H., M,) (resp.,
CB(H,,M,). Hence for p; € M,(H?), the norm of pe in the operator
space H is the completely bounded norm of the inap p; : H. — M, and
it is ||pe, ||, and for g¢ € M,(H}), the norm of ¢, in the operator space
H} is the completely bounded norm of the map ¢f : H, — M,, and it is

Let {e;}:cs be an orthonormal basis for a Hilbert space H, let [€4] be

in M,(H), let & = Ziel‘”ilei be H, and let z, = [z},] be in M,. We

formally write
[€x] = zies.
el
Let ¢ = ) ;o ziei be in H, let £ = [y]= Yicrziei be in M, (H), let
n=[nx = Z,-E] yiei be in M, (H), let {4 = Zie] xi,e; be in H, and
let ng = EiEI yie; be in H. Then

pe(ic) = (G Ex)] = D i
1€l

- Zi‘Elﬂ
el

pfm [pE(Znu = l: Zyklrz }
i€l
= Z Y: @ Ty

i€l
(we) = [(&kt, Q)]

=)z,

el

QEm “‘Jn Zyl & ;.
el
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LEMMA 2.7. Let k and m be positive integers with k < m, let H be a
k-dimensional Hilbert space, and let £ € Mn(H). Then ||pe,, ||= ||pellcs=

I€l}> and |lg¢.. 1= llgelles= lI€]l-

ProoF. Let {e,'}le be an orthonormal basis for H, {= x1¢; + -+ +
Trer with x;, € My, and n=y1e; + -+ + yxex € M, (H). Then p¢, (14)=
k M, ~ koo . E . ol
2= Yi © xiﬂl Qe (Wy)= D i1 Ui @ T4, [lig]l= || Yzt Yivill?, and Jlwyll=
IS5, gyt ll3. Obviously, lell= Jlo]l for # € M. By Lemma 2.6, if
1 TR
k< m, then [lpe, 1= | Syes izl and llge, o= | Ty aizil*. Henee
by Theorem 2.4, ||pe,. || = l[pellcs= Il - and [lge,. [I== llgell b= [I€]]-

THEOREM 2.8. Let K be a Hilbert space and l=t £ € M,(K). Then
Ipellce= 1€ ]I~ and [Iggllcs= lI€]]e-

PROOF. Let £ = [£;;] bein M, (K )and H =span {{;; : 1 <i¢,j <n}.
Then H is finite dimensional. Let pEH (resp., qEH) be the restriction of p,
(resp., g¢) to H. By Lemma 2.7, HP?ch: €]l and ||qf”cb: 1€ -

For n € M,,(K), we can decompose n = n; + 1y with 9, € M, (H),
N2 € Mum(H*). Then |lig, || < lliel lwe, I < llwell. e, (in)= Pl (74,) and
Qe (wn)= afl (wy,). Hence [[pellco= lI¢]l- and |lgellce= II€]]..

We define & : K'* — K, by ®(pe¢)= we and define ¥ : K — K. by
U(qe¢)= i¢. Then @ and ¥ are linear. The following was proved in [1,6].
But we give here another Proof.

COROLLARY 2.9. ® and ¥ are complete isometries, i, e, we can iden-
tify K* (resp., K}) with K, (resp., K.).

PROOF. By definition, we have |jwell = ||€]|r, |li¢]| = [1€]|cs R(pe)= we
and U(pg)=1¢ for £ € M,(H). Hence ® and ¥ are complete isometries
by Theorem 2.8.

COROLLARY 2.10. Let k,m,n be positive integers with min{k,n} <
m, let a; € M, let am= sup{|| Ele ci®ai] :ci € Mp.| Zle ctei|| =
1}, and let = sup{|| Zle ci®ail| i ¢; € Mm, || Zle cic¥|| = 1}. Then

Qm= || Z?:l aia:H% a’nd 18771: || Z?:l a:‘ai”%'
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PRrRoOO¥. Let {ei}le be the standard basis for C™, £= aje; +---+arex
with a; € M,, and n= bje; + - + brex€ M’m(C"). Then pgm(n):
k ,
S 06 b, ()= 3y 05 © b el o= I
Hence by Theorem 2.8, a,,= ||£]|.. and Bn= Her e, ap= | Zz 1 aid; *)|:
and d,= HZ __la *a;]|7. By Lemma 2.6(1), a;<= HZA | aia} *1z and

A< || Zz Leraillz. 3. for any positive integer . Hence if n < m, ap= ay,
and (3, = 3,. By Lemma 2.6(2) and 2.6(3), if k¥ < m, a,= aj and

Bm = Ok. Therefore if min{k,n} < m, then a,= HZZ":laia;‘H% and
Bm= | 1, atai?.
REMARK. a7 = 3, but if 2 < k and 2 < n, there always exist

matrices b, € M, for 1 <¢ < k such that a, # ,.

3. Operator Hilbert Space Structure of Hilbert Spaces

G. Pisier [10] showed that a Hilbert space H is isometrically embeded
in B(K) for some Hilbert space K, gave H the operator space structure
induced by B(L'), and defined this operator space structure on H by
operator Hilbert space.

In this section, we define (€|, = || dicr i ® rlH2 for z =3 ., xie;
in M, (H). We show that H is an operator space with this matrix norm,
and show that this operator space is the same as the operator Hilbert
space which is defined in [10].

LEMMA 3.1. Let {¢;};c; be a fixed orthonorwmal basis for a Hilbert
space H, let = 37, ,x;e; be in M,(H), and iet n= > icsYit: be in
]\/[m(H). Then the following hold :

N DIRIE yzH < Zlez 26 |2 e i @ il

(2) if n < m, 'TIH2 = sup{|| Zze/ T Qyill | Zzel Yi &

yall =1}

PRO()F Let J be a ﬁnlte subset of I. Then || 30, c i@ yill < | 34,
x; @ @2 e Vi DYil? > by [8, Lemma 2. 4] Hence ( ) holds.

Assume n < m. Put o = || 3. e T ® .I'ZHZ and ay; = r; ¢ 0. Then

Hzler’: @ I1H2 = | ZzEI”T' @ yil|. Hence (2) holds.
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THEOREM 3.2. Let {e;}ic; be an orthonormal basis for a Hilbert
space H and let ||z, = (| 3, ;2: ® 4|7 for z = D icrTies € My(H).
Then H is an operator space with this matrix norm Il lo-

PROOF. Let ¢ = Yicr Ti€i, = D icryici bein M (H) Then £+ =
Zi.g[(l'i + yi)ei and

lE+nl =1 (zi+y) 2 T F 3
=34
<HEZ+ M2+ 0wl + 1Sy )
el ¢/
< NENZ + Inli3 + 211€llo Il

Hence || - ||, is a norm on M, (H).
Let a, b be in M, and ¢ = Zielxiei be in M,(H). Then afb =
Y icr axibe;, (az,b)® (azib)= (a®@a)(z;2z,)(b®b) and |la®al| < ||al|?.

lagbll, = | > (az:b) @ (az;b)||*
i€l
< [lallliefillEl o
Note that (a @ ¢c) @ (b B d) = (a®b) @ (a ® d) @ (ce b)®(ctrd) for a,b

€ Mpande,de M, Let £ = Ziel z;e;bein M,(H)and n = ZIE] Yi€;
be in M,,(H). Then by Lemma 3.1(1),

lE@nll=1> (z.0v) 2T D vl

i€l
=1 wi0nE®) 2eud)Y vondY ye gl
el et el el
=max{|| } i@ nl 1Y ol Y v o all IS ve wd)

i€l i€l e e
= max{||¢][3, 73]}

Hence || © n|l, = max{||€||,, ||7]|o}. Therefore H is an operator space
with this matrix norm.
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If H is a subspace of a Hilbert space K, H, is a subspace of the row
Hilbert space K, and H. is a subspace of the column Hilbert space K.
The next theorem shows that if H is a subspace of a Hilbert space K.
H, is a subspace of the operator Hilbert space K.

THEOREM 3.3. Let H and K be Hilbert spuces and ¢ : H — K be
isometric. Then ¢, : H, — K, defined by ¢, &) = ¢(£) is completely
isometric.

PROOF. Similar to Theorem 2.5.

Let H be a Hilbert space, let ¢ be in H, and let we : H — C be
defined by we(n) = (n,€). Then the standard dual space of H,, H? is
{we: ¢ € H} and M,(H})= CB(H,, M,). We set we=|we,, J€ Mn(H})
for = [€i;]€ Mp(H,). Now, we prove that H* is completely isometrically
1somorphic to H,. Then this operator space is the same as the operator
Hilbert space which is defined in [10] by [10, Theorem 1.1.].

THEOREMY 3.4, Let @ : H, — H} be defined by ®(p¢)= w¢. Then @

is a complete isometry, i, e, we can identify H» with H,,.

PROOF. Let {e;};c; be an orthonormal basis for H, let ( = Doie Zits
be in H, hzt'f = [lu]= Zie]rz(ii be in M, (F), and let n = [pu) =
ZZEI i€, bein My, (H). Then we(i¢)= }:iel LT, we,, (1g)= Ziel YT,

Hence if n < m, then by Lemma 3.1,

lyllo = 1}

=sup{l[ gl Y v @wl =1)

lwe, || = sup{llwe,, (W)l 1 y € M (H),

el €]
=sup{ll 2@ owil 1D _viwwil =1}
= el
=Dzl

el

Therefore ||wel|cs = [|€]], 7, €,  is a complete isometry.
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REMARK. Let {e;};cs be an orthonormal base for a Hilbert space
H,let £ =3,  2i¢; be in My(H), and let [|€]| = || 32,; zi®2%||*. Then
by Lemma 2.3, it is independent to orthonormal bases. But. it is not a

norm on My, (H ). For example, we put H = C?, ;= y, = [(l) 8] , ro=

N 0 1 ,
Yz = [O UJ ver =(1,0), e2 = (0,1), é= 16y + 2300, 1= y16) + yaeq.

Then Ji¢fi= lInli= 1, I + 7ll= V2 + V5 and |lz, & y} + 12 & y3|= V2.
Thus |||} is not a norm on M,(C?) and does not satisfy || DricrTinyl <
* 1 . ) * 1
12 iermi @ aillz | Ciervi @ yrll=.
. 1 1

Simarly, [[€]] = | e 71 © 2,1 and [l = | Syep s & ! are not
norms on M, (C?).

Finally we construct a matrix norm on H whict is not an operator
space norm on H.

LEMMA 3.5. Let A bea C*-algebra, #y, -+ ,zpn, 1. .yn € A, P =
i Timtawl, Q = N vty yyis and R = YL ety + gyl
Then ||R[* < |[P|[|QIl

Proor. We may assume that A is a subalgebre of B(H) for some
Hilbert space H.
P R

Note that 51 el ) + I i o) = 1, 4]

Let €, n be unit vectors of H such that (Ry, £) is a real number. Then
any real number ¢,

0s ([11: g} (tn{) ‘ (f)) =t3(Py,n) + 2t(RE, ) + (Qn, 7).

Hence (Rn,£)* < (PEE(@n,n) < IPIQIL iye. (Rn,€)* < 1Pl
Thus ||R||* < ||P}|IQ]l.

PROPOSITION 3.6. Let {e;};c; be an orthonormal base for a Hilbert
space H, let £ =3, x;e; be in M,(H), and let ||¢|= %H Doier TirT +
;rfxl-H%‘ Then it is a matrix norm on H, but is not an operator space
norm on H.
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PROOF. Let £é= Zie[x,-e,- and 7= Zigy,ﬂi € M,(H). Then by

Lemma 3.5,

1
1€+ nl1* = 51D _(ri +yi)(@i+ v + (@i + 3" (i + vi)]
134
1
€1+ > + 31 S e+ wia o+ 51 S s + o
i€l el
< HIEN® + lall® + 20elin)

AN

Hence ||-|| is a norm on M, ( H). But, we put {= {1 2] €)= [() 1].

0 0 1 0

Then ||aé||* = 8428 4nq €2 = %@ Thus || - || is not an operator

space norm on H.

10.

11

2
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